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Chapter 1

Goldstone Bosons

Goldstone bosons are weakly-coupled states which appear in the low-energy spectrum of

any system for which a rigid (or global) symmetry is spontaneously broken (that is, the

symmetry is not preserved by the system’s ground state). A great deal is known about

the properties of these bosons, since at low energies their properties are largely governed

by the nature of the symmetries which are spontaneously broken, depending only weakly

on the details of the system itself.

This review is devoted to explaining the modern effective lagrangian method for

identifying Goldstone boson properties. These methods are much more efficient than are

the older current-algebra techniques of yore.

1.1 Introduction

It is a common feature of many physical systems that their behaviour is relatively simple

when examined only at low energies (or temperatures) compared to the system’s own

characteristic scales. It often happens that there are relatively few states which can

participate in low-energy processes, and their interactions can sometimes become less and

less important the lower the energies that are examined. Very general theoretical tools
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exist to exploit this simplicity, when it arises.

One such tool is the technique of effective lagrangians. The guiding idea for this

method is the belief, first clearly enunciated by Weinberg, that there is no loss of generality

in using a field theory to capture the low-energy behaviour of any system. This is because

field theory in itself contains very little content beyond ensuring the validity of general

‘motherhood’ properties like unitarity, cluster decomposition, and so on. According to

this point of view, if a field theory is identified which is the most general consistent with

the low-energy degrees of freedom and symmetries of any particular system (together with

a few ‘motherhood’ properties) then this field theory must provide a good description of

the system’s low-energy limit.

This is a particularly useful observation when the low-energy degrees of freedom

are weakly interacting (regardless of how strongly interacting their higher-energy coun-

terparts might be), because then the resulting field theory may be simple enough to be

used to predict explicitly the system’s low-energy properties. This simplicity is some-

what paradoxical since, as we shall see, the low-energy effective lagrangians are typically

very complicated, involving all possible powers of the various fields and their deriva-

tives. Simplicity is achieved in spite of the complicated effective lagrangian because, for

weakly-coupled theories, general power-counting arguments exist which permit an efficient

identification of the comparatively few interactions which appear at any given order in a

low-energy expansion.

Remarkably, there turns out to be a very important situation for which very gen-

eral results are known concerning the existence of very light degrees of freedom whose

low-energy interactions are weak. This occurs whenever a continuous global symmetry is

spontaneously broken (i.e. which is a symmetry of the hamiltonian but not a symmetry
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of the ground state), since when this happens Goldstone’s theorem guarantees the ex-

istence of low-energy Goldstone bosons, as well as determining a great deal about their

interactions. These theorems, and their description in terms of an effective lagrangian

formulation, are the subject of this review.

1.1.1 A Road Map

This section outlines how the material covered in this review is organized.

1. General Formalism: All of the general results may be found in Chapter 1, starting

with a statement of the key theorems — those of Noether and Goldstone — which

underlie everything else. This is followed by a motivational discussion of the sim-

plest example to which Goldstone’s theorem applies. Although the properties of the

Goldstone bosons are guaranteed by general theorems, the moral of the example is

that these properties are generally not manifest in a low-energy effective lagrangian

unless a special choice of variables is used. These variables are identified and ex-

ploited first for spontaneously-broken abelian internal symmetries, and then the

process is repeated for nonabelian internal symmetries. Both lorentz-invariant and

nonrelativistic systems are considered. For the nonrelativistic case, special attention

given to the breaking of time reversal, since this qualitatively affects the nature of

the low-energy effective lagrangian. The spontaneous breaking of spacetime sym-

metries, like rotations, translations and lorentz transformations, is not discussed in

this review.

2. Applications: Chapters 2 through 4 are devoted to specific applications of the

methods of Chapter 1 to examples in high-energy/nuclear and condensed-matter
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physics. Chapter 2 starts with the classic relativistic example of pions as pseudo-

Goldstone bosons, whose study gave birth to many of the techniques described in

Chapter 1. (A pseudo-Goldstone boson is the Goldstone boson for an approximate

symmetry, as opposed to an exact symmetry.) This is followed in Chapter 3 by a

study of spin waves (magnons) in both ferromagnets and antiferromagnets. Chapter

4 then closes with a recent, more speculative, application of these ideas to the SO(5)

proposal for the high-temperature superconductors.

3. Bibliography: Finally, Chapter 5 contains a brief bibiography. It is not meant

to be exhaustive, as a great many articles have emerged over the past decades of

applications of these methods. I therefore restrict myself to listing those papers and

reviews of which I am most familiar. I apologize in advance to the authors of the

many excellent articles I have omitted.

The review is aimed at upper-year graduate students, or practicing researchers, since

it presupposes a familiarity with quantum field theory. It was written with an audience

of high-energy and nuclear phycisists in mind, and so for the most part units are used for

which h̄ = c = 1. However, I hope it will prove useful to condensed-matter physicists as

well. Enjoy!

1.2 Noether’s Theorem

We start with a statement of Noether’s theorem, since this plays a role in the statement

of Goldstone’s theorem, which is the main topic of this chapter.

For a field theory Noether’s theorem guarantees the existence of a conserved current,

jµ, for every global continuous symmetry of the action. To low orders in the derivative
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expansion it is usually enough to work with actions which depend only on the fields and

their first derivatives, so we restrict our statement of the theorem to this case.

Consider therefore a system governed by an action S =
∫
d4x L(φ, ∂µφ), where φ(x)

generically denotes the fields relevant to the problem. We imagine that S is invariant

under a set of transformations of these fields, δφ = ξa(φ)ωa, where ωa denote a collection

of independent, spatially constant symmetry parameters. Invariance of S implies that the

lagrangian density, L, must vary at most into a total derivative:

δL ≡ ∂µ

(
ωa V µ

a

)
, (1.2.1)

for some quantities V µ
a (φ). This equation is meant to hold as an identity, for arbitrary

field configurations, φ, and for arbitrary constant parameters, ωa. Rewriting the variation

of L directly in terms of the variations of the fields, and equating to zero the coefficient

of the arbitrary constant ωa in the result then gives:

∂µ V
µ
a =

∂L
∂φ

ξa +
∂L

∂(∂µφ)
∂µξa

=

[
∂L
∂φ

− ∂µ

(
∂L

∂(∂µφ)

)]
ξa + ∂µ

(
∂L

∂(∂µφ)
ξa

)
. (1.2.2)

The statement of the theorem follows from this last equation. It states that the

quantities

jµ
a ≡ − ∂L

∂(∂µφ)
ξa + V µ

a , (1.2.3)

satisfy the special property

∂µj
µ
a = 0, (1.2.4)

when they are evaluated at a solution to the equations of motion for S — i.e. on field

configurations for which the square bracket on the right-hand-side of eq. (1.2.2) vanishes.
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Even though we have used relativistic notation in this argument, the conclusion,

eq. (1.2.4), is equally valid for nonrelativistic systems. For these systems, if we write

ρa = j0
a for the temporal component of jµ

a , and denote its spatial components by the three-

vector ja, then current conservation (eq. (1.2.4)) is equivalent to the familiar continuity

equation

∂ρa

∂t
+ ∇ · ja = 0. (1.2.5)

Eq. (1.2.4) or eq. (1.2.5), are called conservation laws because they guarantee that

the charges, Qa, defined by

Qa(t) =
∫

fixed t
d3r ρa(r, t) =

∫
d3r j0

a(x), (1.2.6)

are conserved in the sense that they are independent of t. These charges are sometimes

called the generators of the symmetry because their commutator with the fields give the

symmetry transformations themselves

iωa [Qa, φ(x)] = ωa ξa = δφ. (1.2.7)

The existence of such a conserved current carries special information if the symmetry

involved should be spontaneously broken, as we now describe.

1.3 Goldstone’s Theorem

Whenever the ground state of a system does not respect one of the system’s global con-

tinuous symmetries, there are very general implications for the low-energy theory. This

is the content of Goldstone’s theorem, which we now present. This theorem is central

to the purpose of this chapter, which is devoted to making its implications manifest in a

low-energy effective theory.
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Goldstone’s theorem states that any system for which a continuous, global symmetry

is spontaneously broken, must contain in its spectrum a state, |G〉 — called a Goldstone

mode, or Goldstone boson since it must be a boson1 — which has the defining property

that it is created from the ground state by performing a spacetime-dependent symmetry

transformation. In equations, |G〉 is defined by the condition that the following matrix

element cannot vanish:2

〈G|ρ(r, t)|Ω〉 6= 0. (1.3.1)

Here, |Ω〉 represents the ground state of the system, and ρ = j0 is the density for the

conserved charge — guaranteed to exist by Noether’s theorem — for the spontaneously

broken symmetry.

Before turning to its implications, we outline the proof of this result. The starting

point is the assumption of the existence of a local order parameter. This can be defined

to be a field, φ(x), in the problem which satisfies two defining conditions. Firstly, it

transforms nontrivially under the symmetry in question: i.e. there is another field, ψ(x),

for which:

δψ ≡ i[Q,ψ(x)] = φ(x). (1.3.2)

Q is the conserved charge defined by integrating the density ρ(r, t) throughout all of space.

Secondly, the field φ must have a nonzero expectation in the ground state:

〈φ〉 ≡ 〈Ω|φ(x)|Ω〉 ≡ v 6= 0. (1.3.3)

This last condition would be inconsistent with eq. (1.3.2) if the ground state were invariant

1Supersymmetry is an exception to this statement, since spontaneously broken global supersymmetry
ensures the existence of a Goldstone fermion, the goldstino.

2We use nonrelativistic notation here to emphasize that the conclusions are not specific to relativistic
systems. This will prove useful when nonrelativistic applications are considered in later sections.
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under the symmetry of interest, since this would mean Q|Ω〉 = 0, implying the right-hand-

side of eq. (1.3.3) must vanish.

The proof of the theorem now proceeds from the following steps. (i) Substitute

eq. (1.3.2) into eq. (1.3.3); (ii) Use Q =
∫
ρ d3r in the result, as is guaranteed to be

possible by Noether’s theorem; (iii) Insert a partition of unity as a sum over energy

eigenstates, 1 =
∑

n |n〉〈n|, on either side of the operator ρ. The resulting expression

shows that if no energy eigenstate exists which satisfies the defining condition, eq. (1.3.1),

then the right-hand-side of eq. (1.3.3) must vanish, in contradiction with the starting

assumptions. This proves the theorem. We next elaborate on its consequences.

The defining matrix element, eq. (1.3.1), and the conservation law, eq. (1.2.5), to-

gether imply that Goldstone bosons must have a number of important properties. Besides

determining their spin and their statistics, it implies two properties which are of particular

importance:

1. The Goldstone boson must be gapless, in that its energy must vanish in the limit

that its (three-) momentum vanishes. That is:

lim
p→0

E(p) = 0. (1.3.4)

To see why this follows from eq. (1.3.1), it is helpful to make the dependence

on position and time in this equation explicit by using the identities ρa(r, t) =

e−iHt ρa(r, 0) eiHt and ja(r, t) = eiP·r ja(0, t) e
−iP·r, together with the energy- and

momentum-eigenstate conditions: H|Ω〉 = P|Ω〉 = 0, P|G(p)〉 = p|G(p)〉 and

H|G(p)〉 = Ep|G(p)〉. Then, differentiation of eq. (1.3.1) with respect to t, and

use of the continuity equation, eq. (1.2.5), gives:

− iEp e
−iEp t 〈G|ρa(r, 0)|Ω〉 = 〈G|∂ρa

∂t
(r, t)|Ω〉
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= − 〈G|∇ · ja(r, t)|Ω〉 (1.3.5)

= −ip · 〈G|ja(r, t)|Ω〉.

Eq. (1.3.4) follows from this last equality in the limit p → 0, given that the matrix

element, 〈G|ρa(r, 0)|Ω〉, cannot vanish by definition for a Goldstone boson.

In relativistic systems, for which E(p) =
√
p2 +m2 where m is the particle mass,

the gapless condition, eq. (1.3.4), is equivalent to the masslessness of the Goldstone

particle.

2. More generally, the argument just made can be extended to more complicated matrix

elements. One finds in this way that the Goldstone boson for any exact symmetry

must completely decouple from all of its interactions in the limit that its momentum

vanishes. Physically, this is because eq. (1.3.1) states that in the zero-momentum

limit the Goldstone state literally is a symmetry transformation of the ground state.

As a result it is completely indistinguishable from the vacuum in this limit.

These properties have a lot of implications for the low-energy behaviour of any

system which satisfies the assumptions of the theorem. The first guarantees that the

Goldstone boson must itself be one of the light states of the theory, and so it must be

included in any effective lagrangian analysis of this low energy behaviour. The second

property ensures that the Goldstone mode must be weakly coupled in the low-energy

limit, and strongly limits the possible form its interactions can take.

The properties of gaplessness and low-energy decoupling can also be useful even if

the spontaneously broken ‘symmetry’ in question is really not an exact symmetry. To the

extent that the symmetry-breaking terms, Hsb, of the system’s Hamiltonian are small, the

symmetry may be regarded as being approximate. In this case the violation of the gapless
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and decoupling properties can usefully be treated perturbatively in Hsb. The Goldstone

particles for any such approximate symmetry — called pseudo-Goldstone bosons — are

then systematically light and weakly coupled at low energies, instead of being strictly

massless or exactly decoupled.

The purpose of the remainder of this chapter is to show in detail how these properties

are encoded into the low-energy effective lagrangian. By considering simple examples we

find that although these properties are always true, they need not be manifest in the

lagrangian in an arbitrary theory. They can be made manifest, however, by performing

an appropriate field redefinition to a standard set of field variables. We first identify

these variables, and use them to extract the implications of Goldstone’s theorem for the

low-energy effective theory in the simplest case, for which the symmetry group of interest

is abelian. The results are then generalized in subsequent sections to the nonabelian case.

1.4 Abelian Internal Symmetries

In order to see the issues which are involved, it is instructive to consider a simple field

theory for which a symmetry is spontaneously broken. We therefore first consider a simple

model involving a single complex scalar field, φ.

1.4.1 A Toy Example

The lagrangian density:

L = − ∂µφ
∗∂µφ− V (φ∗φ),

with V =
λ

4

(
φ∗φ− µ2

λ

)2

, (1.4.1)

is invariant with respect to a U(1) group of symmetries: φ → eiα φ. This is a global

symmetry because the term involving derivatives of φ is only invariant if the symmetry
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parameter, α, is a constant throughout spacetime. It is called an internal symmetry since

the symmetry acts only on fields and does not act at all on the spacetime coordinate, xµ.

For later reference, the Noether current for this symmetry is:

jµ = −i (φ∗∂µφ− φ ∂µφ
∗) . (1.4.2)

For small λ this system is well approximated by a semiclassical expansion, provided

that the field φ is O
(
λ−

1

2

)
in size. This may be seen by redefining φ = φ̃/

√
λ, and noticing

that all of the λ-dependence then scales out of the lagrangian: L(φ, µ, λ) = 1
λ
L(φ̃, µ, 1) —

for which the limit λ→ 0 is seen to be equivalent to h̄→ 0 in the semiclassical limit.

The vacuum of the theory is therefore well described, for small λ, by the classical

configuration of minimum energy. Since the classical energy density is a sum of positive

terms, H = φ̇∗φ̇+∇φ∗ ·∇φ+V (φ∗φ), it is simple to minimize. The vacuum configuration

is a constant throughout spacetime, φ̇ = ∇φ = 0, and its constant value, φ = v, must

minimize the classical potential: V (v∗v) = 0. We may use the U(1) symmetry to choose

v to be real, and if µ2 is positive then the solution becomes v = µ/
√
λ. Happily this

configuration lies within the conditions of validity of this semiclassical analysis.

Since the vacuum configuration, φ = v 6= 0, is not invariant under the U(1) transfor-

mations, φ → eiαφ, the U(1) symmetry is seen to be spontaneously broken. Goldstone’s

theorem should apply, and so we now identify the Goldstone degree of freedom.

The spectrum may be identified by changing variables to the real and imaginary

parts of the deviation of the field φ from its vacuum configuration. Defining R ≡
√

2 Re (φ − v) and I ≡
√

2 Im φ diagonalizes the kinetic and mass terms, and the

scalar potential in terms of these variables becomes:

V =
m2

R

2
R2 +

g30

3!
R3 +

g12

2
RI2 +

g40

4!
R4 +

g22

4
R2I2 +

g04

4!
I4, (1.4.3)
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Figure 1.1: The Feynman graphs which describe R−I scattering at tree level. Solid lines
denote R and dashed lines represent I.

where the couplings and masses in this potential are given in terms of the original param-

eters, λ and µ, by:

m2
R

= λµ2,
g30

3!
=
g12

2
=

λv

2
√

2
,

g40

4!
=
g04

4!
=
g22

4
=
λ

16
. (1.4.4)

Notice the existence of a massless field, I, as is required by Goldstone’s theorem. We

can verify that I really is the Goldstone boson by writing the Noether current, eq. (1.4.2),

in terms of the mass eigenstates, R and I:

jµ = v
√

2 ∂µI + (R ∂µI − I ∂µR) . (1.4.5)

Clearly the matrix element:

〈I(p)|jµ(x)|0〉 ∝ v
√

2 pµ e−ipx (1.4.6)

does not vanish (unless v = 0), as is required of a Goldstone boson.

A puzzle with the potential of eqs. (1.4.3) and (1.4.4) is that the Goldstone boson,

I, appears in the scalar potential, and so its couplings do not appear to vanish in the

limit of vanishing momentum. This is only an appearance, however, and I really does

decouple at low energies, as can be tested by computing Goldstone boson scattering in

this limit. For example, the S-matrix at tree level for I −R scattering may be computed

13



by evaluating the Feynman graphs of Fig. (1.1). The result is:

S[R(r) + I(s) → R(r′) + I(s′)] =
iA δ4(r + s− r′ − s′)

(2π)2
√

16s0r0s′0r′0
, (1.4.7)

with

A = − g22 +
g12 g30

(s+ s′)2 +m2
R
− iε

+ g2
12

[
1

(s+ r)2 − iε
+

1

(s− r′)2 − iε

]
. (1.4.8)

In the limit sµ, s′µ → 0 this becomes (using the condition r2 = r′2 = −m2
R
):

A → − g22 +
g12 g30

m2
R

− 2g2
12

m2
R

,

= λ
(
− 1

2
+

3

2
− 1

)
= 0. (1.4.9)

The scattering amplitude indeed vanishes in the zero-momentum limit, as it must

according to Goldstone’s theorem. This vanishing is not manifest in the lagrangian,

however, and is only accomplished through a nontrivial cancellation of terms in the S-

matrix. For many purposes, not least when constructing an effective theory to describe

the low energy interactions of the Goldstone bosons, it would be preferable to have this

decoupling be manifest in the lagrangian. We will now do so, by making a field redefinition

to a new set of variables for which decoupling becomes explicit.

1.4.2 A Better Choice of Variables

In order to identify which variables would make the decoupling of Goldstone bosons

more explicit in the lagrangian, it is useful to recall the definition of what the Goldstone

mode physically is. Its defining condition, eq. (1.3.1), can be interpreted to mean that

the Goldstone modes are obtained from the ground state by performing a symmetry

transformation, but with a spacetime dependent transformation parameter.
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In the example considered in the previous section the ground state configuration is

φ = v, and so a local symmetry transformation of this ground-state would be φ = veiθ(x). If

this is substituted into the lagrangian of eq. (1.4.1), we find L
(
φ = veiθ(x)

)
= −v2∂µθ∂

µθ.

θ does not drop out of the problem because, although the lagrangian vanishes when it

is evaluated at φ = v, the configuration veiθ(x) is only related to φ = v by a symmetry

when θ is a constant. This fact that θ parameterizes a symmetry direction when it is

restricted to constant field configurations guarantees that any θ-dependence of L must

involve at least one derivative of θ, thereby dropping out of the problem in the limit of

small derivatives — i.e. small momenta, or long wavelengths.

All of this suggests that θ would make a good representation for the Goldstone

mode, since this is precisely what a Goldstone mode is supposed to do: decouple from

the problem in the limit of small momenta. We are led to the suggestion of using polar

coordinates in field space,

φ(x) = χ(x) eiθ(x), (1.4.10)

in order to better exhibit the Goldstone boson properties. In this expression both θ and

χ are defined to be real. Substituting this into the lagrangian gives:

L = −∂µχ∂
µχ− χ2∂µθ∂

µθ − V (χ2). (1.4.11)

It is clear that these variables do the trick, since the fact that θ appears in the definition,

eq. (1.4.10), in the same way as does a symmetry parameter guarantees that it completely

drops out of the scalar potential, as must a Goldstone boson if its low-energy decoupling

is to be made explicit.

A price has been paid in exchange for making the low-energy decoupling of the

Goldstone boson explicit, however. This price is most easily seen once the fields are
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canonically normalized, which is acheived by writing χ = v + 1√
2
χ′ and θ = 1

v
√

2
ϕ.

With these variables the lagrangian is seen to have acquired nominally nonrenormalizable

interactions:

Lnr = −
[

χ′
√

2 v2
+
χ′2

4v2

]
∂µϕ∂

µϕ. (1.4.12)

Of course, the S-matrix for the theory in these variables is identical to that derived from

the manifestly renormalizable lagrangian expressed in terms of the variables R and I. So

the S-matrix remains renormalizable even when computed using the variables χ′ and ϕ.

(The same is not true for off-shell quantities like Green’s functions, however, since the

renormalizability of these quantities need not survive a nonlinear field redefinition.)

In this toy model there is therefore a choice to be made between making the la-

grangian manifestly display either the renormalizability of the theory, or the Goldstone

boson nature of the massless particle. Which is best to keep explicit will depend on which

is more convenient for the calculation that is of interest. Since, as we shall see, renormal-

izability is in any case given up when dealing with effective low-energy field theories, it is

clear that the variables which keep the Goldstone boson properties explicit are the ones

of choice in this case.

1.4.3 The General Formulation

The reason why the above redefinition works may be seen by asking how the U(1) symme-

try acts on the new variables. The key observation is that the symmetry transformation

becomes inhomogeneous: θ → θ + α, where α is a constant. In terms of the canonically

normalized field, ϕ, this transformation law becomes:

ϕ→ ϕ+
√

2 v α. (1.4.13)
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This kind of transformation rule is the hallmark of a Goldstone boson, since it enforces

the explicit nature of all of the Goldstone boson properties in the lagrangian. In fact —

as can be expected from the generality of Goldstone’s theorem — they can all be derived

purely on the grounds of this symmetry transformation, and do not rely at all on the

details of the underlying model which motivated its consideration.

To show that this is true, imagine writing an arbitrary effective theory for a real

scalar field, ϕ, subject only to the symmetry of eq. (1.4.13) (and, for simplicity, to Poincaré

invariance). The most general lagrangian which is invariant under this transformation is

an arbitrary function of the derivatives, ∂µϕ, of the field. An expansion in interactions of

successively higher dimension then gives:

Leff(ϕ) = −1

2
∂µϕ∂

µϕ− a

4 v4
∂µϕ∂

µϕ ∂νϕ∂
νϕ+ · · · , (1.4.14)

where we have inserted a power of v as appropriate to ensure that the parameter a is

dimensionless. This accords with the expectation that it is the symmetry-breaking scale,

v, which sets the natural scale relative to which the low energy limit is to be taken. In

the toy model just considered, integrating out the heavy field, χ′ produces these powers

of v through the appearance of the inverse of the heavy mass, mR. The result must be an

effective lagrangian of the form of eq. (1.4.14), but with a specific, calculable coefficient

for the parameter a.

This, most general, lagrangian automatically ensures that ϕ has all of the Goldstone

boson properties. For instance, since the symmetry implies that Leff can only depend on

derivatives of ϕ, it ensures that ϕ cannot appear at all in the scalar potential, and so in

particular ensures that ϕ is massless. Similarly, applying Noether’s theorem to the kinetic

term for ϕ implies that there is a contribution to the Noether current, jµ, which is linear
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in ϕ:

jµ =
√

2 v
[
∂µϕ+

a

v
(∂νϕ∂νϕ) ∂µϕ+ · · ·

]
. (1.4.15)

The ellipses in this expression represent contributions to jµ which come from other terms

in the lagrangian besides the ϕ kinetic term. Clearly this ensures that the matrix element

〈G|jµ|0〉 6= 0 so long as v 6= 0.

Such an understanding of the Goldstone nature of a field, like ϕ, as an automatic

consequence of a symmetry is clearly invaluable when constructing effective lagrangians for

systems subject to spontaneous symmetry breaking. We next turn to the generalization

of these results to the more general case of nonabelian internal symmetries.

1.5 Nonabelian Internal Symmetries

The lesson learned from the abelian example is that half of the art of constructing effective

lagrangians for Goldstone bosons lies in the choice of a convenient set of variables in terms

of which their properties are explicitly displayed in the lagrangian. In this section the

above construction is generalized to the case of nonabelian, global, internal symmetries.

1.5.1 A Second Toy Model

As guidance towards an appropriate choice of field variables we once more start with a

simple toy model for which the underlying theory is explicitly known. Consider, therefore,

a system of N real scalar fields, φi, i = 1, . . . , N , which for simplicity of notation we

arrange into an N -component column vector, denoted by φ with no superscript. Notice

that there is no loss of generality in working with real fields, since any complex fields could

always be decomposed into real and imaginary parts. We take as lagrangian density

L = −1

2
∂µφ

T∂µφ− V (φ), (1.5.1)
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where the superscript ‘T’ denotes the transpose, and where V (φ) is a potential whose

detailed form is not required. The kinetic term of this lagrangian is manifestly invariant

under the Lie group, O(N), of orthogonal rotations amongst the N real fields: φ → Oφ,

where the O’s are independent of spacetime position, ∂µO = 0, and OTO = 1. In general,

the potential V (φ) need not be also invariant under these O(N) transformations, but may

only preserve some subgroup of these, G ⊂ O(N). That is, if g ∈ G, then V (gφ) = V (φ)

for all fields φ.

Suppose now that for some regime of parameters this model is well described by

the semiclassical approximation, and further that the potential, V , is minimized for some

nonzero value for the fields: φ = v 6= 0. If this is the case, then the symmetry group G

may be spontaneously broken to some subgroup, H ⊂ G, which is defined by: hv = v, for

all h ∈ H .

1.5.2 A Group-Theoretic Aside

It is important to notice that the current whose existence is guaranteed by Noether’s

theorem — and so which plays the central role in Goldstone’s theorem — arises only if

the symmetry of interest is continuous. Continuous here means that the group elements

may be parameterized by a continuous parameter (like a rotation angle), as opposed

to a discrete label. Groups with continuous labels are called Lie groups provided their

labels are sufficiently smooth. Before proceeding it is useful to pause to record some

mathematical properties of such Lie groups, and their associated Lie algebras.

1. Typically the continuous symmetry groups which arise in physical applications do

so as explicit finite-dimensional unitary matrices. As a result a special role is played

by compact groups, for which the parameter space of the group is a compact set.
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Compact groups are of such special interest since it is only for compact groups that

finite-dimensional, unitary and faithful matrix representations exist.3 We assume

compact groups throughout what follows, and we work explicitly with representa-

tions involving finite-dimensional and unitary matrices, g† = g−1.

2. There is also no loss of generality in assuming our representation matrices, g, to be

real: g = g∗. This is because any complex representation may always be decomposed

into its real and imaginary parts. This convention is ensured in the scalar-field

example we are considering by choosing to employ only real fields. We do not

assume these matrices to be irreducible. Recall that if the matrices are reducible,

then there is a basis in which they can be written in a block-diagonal form:

g =



g(1)

. . .

g(n)


 . (1.5.2)

3. It is useful to phrase much of what follows in terms of the Lie algebra of G and H

rather than in terms of the Lie groups themselves. That is, we take advantage of

the fact that any group element which is connected to the identity element, g = 1,

may be written as a matrix exponential: g = exp [iαaTa], of a linear combination

of a collection of basis matrices, or generators, Ta, a = 1, ..., d where d is called the

dimension of the group. The Ta’s lie inside what is called the Lie algebra of G. The

unitarity and reality of the group elements, g, imply the matrices Ta to be hermitian

and imaginary:

Ta = T †
a = −T ∗

a = −T T

a . (1.5.3)

3A representation is faithful if there is a one-to-one correspondence between the group elements and
the matrices which represent them. Since the groups of interest are usually defined by a finite-dimensional
and unitary representation, this representation is, by definition, faithful.
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4. Since the generators, Ta, are finite dimensional and hermitian, it follows that the

matrix Nab = Tr(TaTb) is positive definite. As a result we are free to redefine the

generators to ensure that Nab = δab. With this choice there is no distinction to be

made between indices a and b which are superscripts and subscripts. We assume

this convenient choice to have been made in what follows.

5. Closure of the group multiplication law — i.e. the statement that g1, g2 ∈ G implies

g1g2 ∈ G —implies commutation relations for the Ta’s: Ta Tb − Tb Ta = i cabd Td

where the cabd’s are a set of constant coefficients which are characteristic of the

group involved. From its definition it is clear that cabd is antisymmetric under

the interchange of the indices a and b. Whenever the generators are chosen so

that Nab = δab it also turns out that cabd is completely antisymmetric under the

interchange of any two indices.

6. For the present purposes it is convenient to choose a basis of generators which

includes the generators of the subgroup H as a subset. That is, choose {Ta} =

{ti, Xα}, where the ti’s generate the Lie algebra of H , and the Xα’s constitute the

rest. Since H is defined as the group which preserves the vacuum configuration,

its generators must satisfy tiv = 0. The closure of the subgroup, H , under multi-

plication ensures that ti tj − tj ti = i cijk tk (with no Xα’s on the right-hand-side).

Schematically this can be written cijα = 0.

7. The Xα’s do not lie within the Lie algebra of H , and so satisfy Xαv 6= 0. They are

said to generate the space, G/H , of cosets. A coset is an equivalence class which is

defined to contain all of the elements of G that are related by the multiplication by

an element of H . Physically, the Xα’s represent those generators of the symmetry

21



group, G, which are spontaneously broken.

8. The group property ofH described above, together with the complete antisymmetry

of the cabd’s implies a further condition: ciαj = 0. This states that tiXα −Xα ti =

i ciαβXβ (with no tj ’s on the right-hand-side). This states that the Xα’s fall into

a (possibly reducible) representation of H . Once exponentiated into a statement

about group multiplication, the condition tX − Xt ∝ X implies, for any h ∈ H ,

that hXαh
−1 = Lα

βXβ for some coefficients, Lα
β.

By contrast, XαXβ −Xβ Xα need not have a particularly simple form, and can be

proportional to both Xγ’s and ti’s.
4

1.5.3 The Toy Model Revisited

Returning to the toy model defined by the lagrangian, eq. (1.5.1), we know Goldstone’s

theorem implies that the assumed symmetry-breaking pattern must give rise to a collec-

tion of massless Goldstone bosons, whose interactions we wish to exhibit explicitly. The

Goldstone modes are, intuitively, obtained by performing symmetry transformations on

the ground state. Since an infinitesimal symmetry transformation on the ground state

corresponds to the directions Xαv in field space, we expect the components of φ in this

direction, vTXαφ, to be the Goldstone bosons. It is indeed straightforward to verify that

the G-invariance of the lagrangian ensures the masslessness of these modes. There is

consequently precisely one Goldstone degree of freedom for each generator of G/H .

More generally, in order to make low-energy decoupling of these Goldstone bosons

manifest we require that they do not appear at all in the scalar potential. Following the

4If the right-hand-side of Xα Xβ −Xβ Xα were assumed not to contain any Xγ ’s, then the coset G/H
would be called a symmetric space, but we do not make this assumption here.
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example taken for the case of the abelian symmetry, we therefore change variables from

φ(x) = {φi} to χ(x) = {χn} and θ(x) = {θα}, where

φ = U(θ) χ, (1.5.4)

and U(θ) = exp[iθα(x)Xα] is a spacetime-dependent symmetry transformation in the

direction of the broken generators, Xα.

In order for eq. (1.5.4) to provide a well defined change of variables, χ must satisfy

some kind of constraint. We therefore require that χ be perpendicular (in field space) to

the Goldstone directions, Xαv. That is:

vTXαχ = 0, for all xµ and Xα. (1.5.5)

Notice that this constraint — together with the identity vTXαv = 0, which follows from

the antisymmetry of the Xα’s — is precisely what is required to ensure the vanishing of

the cross terms, proportional to ∂µθ
α∂µχ′n, in the quadratic part of the expansion of the

kinetic terms about the ground state configuration: χ = v + χ′.

Since U(θ) is an element of G, the variable θ is guaranteed to drop out of the scalar

potential. Of course, this is the point of this change of variables, and it happens because

G-invariance requires the potential to satisfy V (Uχ) = V (χ). As a result, all of the terms

in L which involve the Goldstone bosons, θ, vanish when ∂µθ
α = 0, and eqs. (1.5.4) and

(1.5.5) define the change of variables which makes explicit the low-energy Goldstone-boson

decoupling.

We pause now to briefly argue that it is always possible to satisfy eq. (1.5.5) starting

from an arbitary smooth field configuration, φ(x). That is, we argue that it is always

possible to find a spacetime dependent group element, U(θ) ∈ G, for which χ = U−1φ

satisfies eq. (1.5.5). To this end consider the following function, F [g(α)] ≡ vTg(α)φ, where

23



g(α) is an arbitrary, spacetime-dependent element of G. Focus, for a moment, on F as

a function of the parameters, αa, of the group for a fixed spacetime position, xµ. Since

all of the variables, φ, v and g have been chosen to be real, and since the group, G, is

compact, F(α) defines a real-valued function having a compact range. It is a theorem

that any such function must have a maximum and a minimum, and so there exist group

elements, g = g(α), for which (∂F/∂αa)|α=α vanishes. Repeating this condition for each

point in spacetime defines functions αa(x) whose smoothness follows from the assumed

smoothness of φ(x).

The final step in the argument is to show that the existence of these stationary

points of F also give solutions to the problem of finding a U for which χ = U−1φ satisfies

eq. (1.5.5). This last step follows by explicitly taking the derivative of g with respect

to αa: and using parameters α such that (∂g/∂αa)g−1 = Ta. In this case the vanishing

of ∂F/∂αa, when evaluated at g = g = g(α), implies vTTagφ = 0. We see that the

choice χ = U−1φ, with U = g−1, therefore satisfies eq. (1.5.5), and the existence of such

a solution follows from the existence of a maximum and minimum of F .

This concludes the argument. We next explore the properties of the new variables.

1.5.4 The Nonlinear Realization

Having motivated this choice of variables, we now determine how they transform under the

group G of symmetry transformations. The transformation rules which we obtain — and

which we show to be unique, up to field redefinitions, below — carry all of the information

concerning Goldstone boson properties, and so requiring low-energy lagrangians to be

invariant under these transformations automatically encodes these properties into the

low-energy theory.
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The starting point is the transformation rule for φ: φ → φ̃ = gφ, where g =

exp[iαaTa]. The transformation rule for the new variables is then θ → θ̃ and χ → χ̃,

where φ = U(θ)χ and φ̃ = U(θ̃)χ̃. That is, under any transformation, g ∈ G, θ, χ, θ̃ and

χ̃ are related by:

gU(θ)χ = U(θ̃)χ̃. (1.5.6)

This last equation states that the matrix γ ≡ Ũ−1gU (where Ũ denotes U(θ̃)) has

the property that γχ = χ̃. The central result to be now proven is that this condition

implies that γ must lie within the subgroup, H of unbroken transformations, and so may

be written γ = exp(iuiti), for some function ui(θ, g). Once this has been demonstrated,

the transformation law therefore becomes:

θα → θ̃α(θ, g) and χ→ χ̃(θ, g, χ), (1.5.7)

where

g eiθαXα = eiθ̃αXα eiuiti ,

χ̃ = eiuiti χ. (1.5.8)

The first of the eqs. (1.5.8) should be read as defining the nonlinear functions θ̃α(θ, g)

and ui(θ, g). They are defined by finding the element, geiθ·X ∈ G, and then decomposing

this matrix into the product of a factor, eθ̃·X , lying in G/H times an element, eiu·t, in H .

The second line of eqs. (1.5.8) then defines the transformation rule for the non-Goldstone

fields, χ.

These rules generally define transformation laws which are nonlinear in the Gold-

stone fields, θα. They furnish, nonetheless, a faithful realization of the symmetry group G,

in that θ̃(θ, g1g2) = θ̃(θ̃(θ, g2), g1) etc.. This may either be directly verified using the defi-
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nitions of eqs. (1.5.8), or by noticing that this property is inherited from the faithfulness

of the original linear representation of G on φ.

There is a particularly interesting special case for which eqs. (1.5.8) can be explicitly

solved for γ = eiu·t and Ũ = eiθ̃·X . This is when g = h lies in H . In this case, the solution

is easily seen to be: γ = h and Ũ = hUh−1. Both χ and θ therefore transform linearly

under the unbroken symmetry transformations, H . That is:

θαXα → θ̃αXα = h θαXα h
−1,

χ → χ̃ = hχ, (1.5.9)

for all h ∈ H .

For the broken symmetries, g ∈ G/H , it is useful to specialize to an infinitesimal

transformation, g = 1 + iωαXα + · · ·. In this case we have γ = 1 + iui(θ, ω)ti + · · ·,

and U(θ̃) = U(θ)[1 + i∆α(θ, ω)Xα + · · ·], where ui(θ, ω) and ∆(θ, ω) must both also be

infinitesimal quantities. Eq. (1.5.8) gives them explicitly to be:

∆α = Tr
[
Xαe

−iθ·X(ω ·X)eiθ·X
]
,

≈ ωα − cαβγω
βθγ +O(θ2); (1.5.10)

ui = Tr
[
tie

−iθ·X(ω ·X)eiθ·X
]
,

≈ −ciαβω
αθβ +O(θ2) (1.5.11)

where we used: Tr(XαXβ) = δαβ , Tr(titj) = δij and Tr(tiXα) = 0.

This last expression for ∆α(θ, ω) can be re-expressed in terms of the change, δθα ≡

ξα(θ, ω) ≡ θ̃α − θα, of the Goldstone-boson fields. The relation between ∆α and ξα is

linear: ∆α = Mαβ(θ) ξβ, where the matrix, Mαβ , of coefficients may be computed using
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the following useful identity, which holds for any two square matrices, A and B:

e−iA ei(A+B) = 1 + i
∫ 1

0
ds e−isABeis(A+B),

= 1 + i
∫ 1

0
ds e−isABeisA +O(B2). (1.5.12)

Using this with A = θ ·X and B = ξ ·X gives:

Mαβ =
∫ 1

0
ds Tr

[
Xαe

−isθ·XXβe
isθ·X

]
. (1.5.13)

The transformation rules for the θα with respect to the broken symmetries in G/H

have two important properties. The first crucial property is that the transformation law

is inhomogeneous in the broken symmetry parameters, since

δθα = ωα − cαβγω
βθγ +O(θ2). (1.5.14)

As was observed earlier for the abelian example, it is this property which enforces the

decoupling of the Goldstone bosons at low energies.

The second important property is that, for a nonabelian group, the symmetries

in G/H act nonlinearly on the fields θα. This property is also significant since it ruins

many of the consequences which would otherwise hold true for symmetries which are

linearly realized. For example, the masses of those particles whose fields lie in a linear

representation of a symmetry group necessarily have equal masses, etc.. The same is not

true for particles whose fields are related by nonlinear transformations.

There is a corollary which follows from the nonlinearity of the realization of the sym-

metries in G/H . The fact that the transformation of θα and χn are both field dependent

implies that the action of these symmetries are spacetime dependent. For example, even

though the transformation parameters themselves, ωα, are constants — since G is a global
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symmetry — the transformation matrix γ = eiu·t which appears in the χ transformation

law is not a constant, ∂µγ 6= 0. This fact complicates the construction of lagrangians

which are invariant with respect to these symmetries.

1.6 Invariant Lagrangians

With the transformation rules for the Goldstone boson fields in hand we may now turn

to the construction of invariant Lagrangians which can describe their low-energy inter-

actions. The main complication here is in the construction of the kinetic terms, since

the transformation rules for the fields are spacetime dependent due to their complicated

dependence on the fields.

A clue as to how to proceed can be found by reconsidering the toy model of scalar

fields φ. In this case the kinetic term, proportional to ∂µφ
T∂µφ is manifestly G invariant.

It must therefore remain so after performing the change of variables to θ and χ. To

see how this is comes about, we notice that after the replacement φ = Uχ we have:

∂µφ = U(∂µχ + U−1∂µUχ). In terms of the new variables, the kinetic term is invariant

because the combination Dµχ = ∂µχ + U−1∂µUχ transforms covariantly: Dµχ → γDµχ.

It does so because U−1∂µU transforms like a gauge-potential:

U−1∂µU → Ũ−1∂µŨ , (1.6.1)

= γ (U−1∂µU) γ−1 − ∂µγ γ
−1.

More information emerges if we separate out the parts of U−1∂µU which are pro-

portional to Xα from those which are proportional to ti since the inhomogeneous term,

∂µγ γ
−1, is purely proportional to ti. That is, if we define:

U−1∂µU = −iAi
µti + ieα

µXα, (1.6.2)
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then each of these terms transforms separately under G transformations:

− iAi
µ(θ)ti → −iAi

µ(θ̃)ti = γ [−iAi
µ(θ)ti] γ

−1 − ∂µγ γ
−1,

ieα
µ(θ)Xα → ieα

µ(θ̃)Xα = γ [ieα
µ(θ)Xα] γ−1. (1.6.3)

We see that the quantity Ai
µ transforms like a gauge potential. For infinitesimal

transformations, g ≈ 1 + iωαXα and γ(θ, g) ≈ 1 + iui(θ, ω)ti, we have:

δAi
µ(θ) = ∂µu

i(θ, ω) − cijku
j(θ, ω)Ak

µ(θ). (1.6.4)

Similarly, eα
µ(θ) transforms covariantly, with

δeα
µ(θ) = −cαiβu

i(θ, ω) eβ
µ(θ). (1.6.5)

In this last expression, the structure constants define representation matrices, (Ti)αβ =

cαiβ , of the Lie algebra of H . These are the same matrices which define the representation

of H that the generators Xα form, and it is important for later purposes to recall that

these representation matrices need not be irreducible. If this representation is reducible

then it is possible to define more G-invariant quantities with which to build the low energy

lagrangian than would otherwise be possible.

If we extract the overall factor of ∂µθ
α, so that Ai

µ = Ai
α(θ) ∂µθ

α and eα
µ =

eα
β(θ) ∂µθ

β , then the identity, eq. (1.5.12), gives the following expressions for the co-

efficients:

Ai
α(θ) = −

∫ 1

0
ds Tr

[
tie

−isθ·XXαe
isθ·X

]
,

≈ 1

2
ciαβθ

β +O(θ2), (1.6.6)

and

eα
β(θ) =

∫ 1

0
ds Tr

[
Xαe

−isθ·XXβe
isθ·X

]
,
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≈ δαβ − 1

2
cαβγθ

γ +O(θ2). (1.6.7)

With these tools it is now clear how to build G-invariant couplings among the θα,

and between the θα’s and other fields, such as χ from the scalar-field example.

It is simplest to build self-interactions for the Goldstone bosons. An invariant La-

grangian density may be built by combining the covariant quantity, eα
µ = eα

β∂µθ
β in all

possible H-invariant ways. This is simple to do since this quantity transforms very simply

under G: eµ ·X → γeµ ·Xγ−1.

Derivatives of eα
µ can also be included by differentiating using the covariant derivative

constructed from Ai
µti:

(Dµeν)
α = ∂µe

α
ν + cαiβAi

µ e
β
ν , (1.6.8)

which transforms in the same way as does eα
µ: δ(Dµeν)

α = −cαiβu
i(Dµeν)

β.

The lagrangian is L(eµ, Dµeν , . . .), where the ellipses denote terms involving higher

covariant derivatives. Provided only that this lagrangian is constrained to be globally H

invariant:

L(heµh
−1, hDµeνh

−1, . . .) ≡ L(eµ, Dµeν , . . .), (1.6.9)

the result is guaranteed to be automatically globally G invariant, as required. For a

Poincaré invariant system, the term involving the fewest derivatives therefore becomes:

LGB = − 1

2
fαβ η

µν eα
µ e

β
ν + (higher-derivative terms). (1.6.10)

In this expression, positivity of the kinetic energy implies that the matrix fαβ must

be positive definite. G-invariance dictates that it must also satisfy fλβc
λ

iα + fαλc
λ

iβ = 0.

It was remarked earlier that on general grounds the matrices, Xα, fill out a representation,

R, of the unbroken subgroup H with representation matrices given by (Ti)αβ = cαiβ , and
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in terms of these matrices G-invariance requires the vanishing of all of the commutator,

[Ti, f ], for all of the generators, Ti. If this representation, R, of H is irreducible then,

by Schur’s lemma, fαβ must be proportional to the unit matrix, with positive coefficient:

fαβ = F 2δαβ. Otherwise, if R is reducible into n irreducible diagonal blocks, then fαβ

need only be block diagonal, with each diagonal element being proportional to a unit

matrix:

fαβ =



F 2

1 δα1β1

. . .

F 2
nδαnβn


 , (1.6.11)

for n independent positive constants, F 2
n . We see that the lowest-dimension terms in the

most general low-energy Goldstone-boson self-coupling lagrangian is parameterizable in

terms of these n constants.

If other fields — denoted here collectively by χ — also appear in the low-energy

theory then, since the symmetry H is not broken by the ground state, the fields χ must

also transform linearly under H : χ → hχ, where the matrices {h} form a (possibly

reducible) representation of H . In this case the starting point for inferring the coupling

of the Goldstone bosons is an arbitrary, globally H-invariant lagrangian: L(χ, ∂µχ, . . .)

with L(hχ, h∂µχ, . . .) ≡ L(χ, ∂µχ, . . .), for ∂µh = 0. This lagrangian will be automatically

promoted to become G-invariant by appropriately coupling the Goldstone bosons.

The promotion toG invariance proceeds by assigning to χ the nonlinearG-transformation

rule: χ → γχ, where γ = γ(θ, g) ∈ H is the field-dependent H matrix which is defined

by the nonlinear realization, eq. (1.5.8). An arbitrary globally H-invariant χ-lagrangian

then becomes G invariant if all derivatives are replaced by the θ-dependent covariant

derivative: ∂µχ→ Dµχ = ∂µχ− iAitiχ, for which Dµχ→ γDµχ.

The general lagrangian therefore becomes: L(eµ, χ,Dµeν , Dµχ, . . .), whereG-invariance
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is ensured provided only that L is constrained by global H invariance:

L(heµh
−1, h χ, hDµeνh

−1, hDµχ, . . .) ≡ L(eµ, χ,Dµeν , Dµχ, . . .). (1.6.12)

1.7 Uniqueness

The previous construction certainly defines a G-invariant lagrangian for the interactions

of the Goldstone bosons which arise from the symmetry-breaking pattern G → H , given

the transformation rules which were derived in earlier sections. Our goal in the present

section is to show that this construction gives the most general such invariant lagrangian.

That is, we wish to show that the most general lagrangian density which is invariant under

the transformation rules of eqs. (1.5.8) may be constructed using only the quantities eα
µ(θ)

and Ai
µ(θ) in addition to any other fields, χ.

We start with a general lagrangian density, L(θ, ∂µθ, χ, ∂µχ), involving the fields

θα, χn and their derivatives. We do not include a dependence on second and higher

derivatives of these fields, but this extension is straightforward to make along the lines

that are described in this section. It is more convenient in what follows to trade the

assumed dependence of L on ∂µθ for a dependence on the combinations eα
µ = eα

β(θ) ∂µθ
β

and Ai
µ = Ai

α(θ) ∂µθ
α. There is no loss of generality in doing so, since any function of θ

and ∂µθ can always be written as a function of θ, eα
µ and Ai

µ. This equivalence is most

easily seen in terms of the matrix variable U(θ) = eiθ·X . Any function of θ and ∂µθ can

equally well be written as a function of U and ∂µU , or equivalently as a function of U

and U−1∂µU . But an arbitrary function of U−1∂µU is equivalent to a general function of

eα
µ and Ai

µ, as may be seen from expression (1.6.2).

The condition that a general function, L(θα, eα
µ,Ai

µ, χ, ∂µχ), be invariant with re-
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spect to G transformations is:

δL =
∂L
∂θα

δθα +
∂L
∂eα

µ

δeα
µ +

∂L
∂Ai

µ

δAi
α +

∂L
∂χn

δχn +
∂L

∂(∂µχn)
δ∂µχ

n = 0. (1.7.1)

We first specialize to the special case where the symmetry transformation lies in H :

g = eiη·t ∈ H . In this case we must use, in eq. (1.7.1), the transformations:

δθα = −cαiβη
iθβ , δeα

µ = −cαiβη
ieβ

µ, δAi
µ = −cijkηiAk

µ,

and δχn = iηi(tiχ)n, δ∂µχ
n = iηi(ti∂µχ)n. (1.7.2)

Requiring δL = 0 for all possible transformation parameters, ηi, then implies the following

identity:

∂L
∂θα

cαiβθ
β +

∂L
∂eα

µ

cαiβe
β
µ +

∂L
∂Aj

µ

cj ikAk
µ − ∂L

∂χn
i(tiχ)n − ∂L

∂(∂µχn)
i(ti∂µχ)n = 0. (1.7.3)

This identity simply states that L must be constructed to be an H-invariant function of

its arguments, all of which transform linearly with respect to H transformations.

For the remaining symmetry transformations which do not lie in H , g = eiω·X ∈

G/H , we instead evaluate eq. (1.7.1) using the following transformations:

δθα = ξα
βω

β, δeα
µ = −cαiβu

ieβ
µ, δAi

µ = ∂µu
i − cijku

jAk
µ,

and δχn = iui(tiχ)n δ∂µχ
n = iui(ti∂µχ)n, (1.7.4)

where ξα = ξα
β(θ)ωβ and ui = ui

α(θ)ωα are the nonlinear functions of θ that are defined

by eq. (1.5.8). Using these in eq. (1.7.1), and simplifying the resulting expression using

eq. (1.7.3), leads to the remaining condition for G invariance:

∂L
∂θα

(
ξα

β + cαiγu
i
βθ

γ
)

+
∂L
∂Aj

µ

∂µu
i
β +

∂L
∂(∂µχn)

i∂µu
i
β(tiχ)n = 0. (1.7.5)
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This last identity contains two separate pieces of information. The first piece can be

extracted by specializing to θα = 0. In this case, since ∂µu
i
β = ∂αu

i
β ∂µθ

α vanishes when

θα = 0, and since eq. (1.5.14) implies ξα
β(θ = 0) = δα

β , we find:

∂L
∂θα

∣∣∣∣∣
θ=0

= 0. (1.7.6)

But, since the group transformation law for θα is inhomogeneous, we may always perform

a symmetry transformation to ensure that θα = 0 for any point p ∈ G/H . As a result,

eq. (1.7.6) implies the more general statement:

∂L
∂θα

≡ 0 throughout G/H. (1.7.7)

The rest of the information contained in eq. (1.7.5) may now be extracted by using

∂L/∂θα = 0 to eliminate the first term. One finds the remaining condition:

(
∂L
∂Aj

µ

+
∂L

∂(∂µχn)
i(tjχ)n

)
∂µu

j
β = 0. (1.7.8)

This equation has a very simple meaning. It states that L can depend on the two variables,

Aj
µ and ∂µχ

n, only through the one combination: (Dµχ)n ≡ ∂µχ
n − iAj

µ(tjχ)n. That is,

χ can appear differentiated in L only through its covariant derivative, Dµχ.

We see from these arguments that the G-invariance of L is equivalent to the state-

ment that L must be anH-invariant function constructed from the covariantly-transforming

variables eα
µ, χ and Dµχ. If higher derivatives of θ had been considered, then the van-

ishing of the terms in δL that are proportional to more than one derivative of ui would

similarly imply that derivatives of eα
µ must also only appear through its covariant deriva-

tive, (Dµeν)
α, defined by eq. (1.6.8). This proves the uniqueness of the construction of

invariant lagrangians using these covariant quantities.
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1.8 The Geometric Picture

There is an appealing geometric description of the resulting effective lagrangian, which

makes available many powerful techniques from differential geometry to effective la-

grangian methods. We pause here to briefly outline this connection.

Consider, for simplicity, only the self-interactions of the Goldstone bosons: LGB(θ).

This can be expanded into terms having increasing numbers of derivatives acting on θ.

The first few terms that are consistent with Poincaré invariance are:

LGB(θ) = −V (θ) − 1

2
gαβ(θ) ∂µθ

α∂µθβ + · · · . (1.8.1)

Positivity of the kinetic energy for fluctuations about any configuration, θα, requires the

symmetric matrix gαβ to be positive definite for all θ.

The geometrical interpretation arises once we recall that the fields θ take values in

the coset space G/H , and so each Goldstone boson field configuration can be considered

to be a map from spacetime into G/H . The function, V , can then be considered to be a

real-valued function which is defined on the space G/H . Similarly, the positive symmetric

matrix, gαβ, defines a metric tensor on G/H . These identifications of V and gαβ with

geometrical objects on G/H are consistent with their transformation properties under

field redefinitions, δθα = ξα(θ), which are the analogues of coordinate transformations on

G/H . To see this, perform this transformation in the lagrangian of eq. (1.8.1). The result

is to replace V and gαβ by the quantities V + £ξV and gαβ + £ξgαβ, where the linear

operator, £ξ, is known as the Lie derivative in the direction specified by ξα, and is given

explicitly for a scalar and a covariant tensor by:

£ξV = ξα∂αV,

and £ξgαβ = ξλ∂λgαβ + gλβ∂αξ
λ + gαλ∂βξ

λ. (1.8.2)
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In these expressions derivatives, like ∂αV , ∂λgαβ or ∂αξ
λ, all represent differentiation with

respect to θα, and not with respect to spacetime position, xµ.

Clearly, the G invariance of the first few terms of LGB therefore becomes equivalent

to the problem of finding a scalar and a metric for which £ξV = £ξgαβ = 0 for each of the

ξα(θ)’s which describe the action of G on G/H . Since every point on G/H can be reached

from any other by performing such a G transformation — i.e. G/H is a homogeneous

space — it follows that the only possible invariant function, V , is a constant which is

independent of θ. This expresses the low-energy decoupling of the Goldstone bosons since

it shows that G invariance completely forbids their appearance in the scalar potential.

Similarly, the condition for the G invariance of the kinetic terms is that the metric

gαβ must also be invariant under the action of all of the ξα(θ)’s which generate G on

G/H . That is, all of these ξ’s must generate isometries of the metric gαβ. The problem of

finding the most general invariant kinetic term is therefore equivalent to constructing the

most general G-invariant metric on G/H . A comparison of the lagrangian of eq. (1.8.1),

with our earlier result, eq. (1.6.10), gives a representation of the metric gαβ in terms of

the quantities eα
β(θ). We have

gαβ = fγλ e
γ
αe

λ
β,

=
n∑

r=1

F 2
r δγrλr

eγr
αe

λr
β , (1.8.3)

≈
n∑

r=1

F 2
r

[
δαrβr

− cαrβrγθ
γ +O(θ2)

]
.

Eq. (1.8.3) also has a geometric interpretation. It shows that the object eα
β can

be interpreted as a G-covariant vielbein for the space G/H . In Reimannian geometry a

vielbein is the name given to a set of N linearly independent vectors, ea
β, a = 1, . . . , N ,

which are tangent to an N -dimensional space. (The name is German for ‘many legs’, with
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viel meaning ‘many’, and so such vectors are also called zweibein in two dimensions —

with zwei = ‘two’ — or vierbein in four dimensions — with vier = ‘four’.) Part of the

utility of identifying such a set of vectors is that it is always possible to reconstruct from

them the space’s metric, using: gαβ = δab e
a
α e

b
β.

The geometrical interpretation of eα
β as a vielbein, and the uniqueness of the con-

struction of invariant lagrangians proven in the previous section, gives the general solution

to the geometrical problem of constructing G-invariant metrics on the space G/H . We

see that there is an n-parameter family of such metrics, where n counts the number of

irreducible representations of H which are formed by the generators, Xα, of G/H . The n

parameters are given explicitly by the constants F 2
r , r = 1, . . . , n.

For many physical applications the representation ofH that is furnished by the Xα is

irreducible, and in this case the G-invariant metric is uniquely determined up to its overall

normalization: gαβ = F 2ĝαβ, with ĝαβ = δαβ + O(θ). For such systems there is precisely

one constant in the effective lagrangian for Goldstone bosons which is undetermined by

the symmetries of the problem, if we include only the fewest possible (two) derivatives:

LGB = −F 2

2
ĝαβ(θ) ∂µθ

α∂µθβ + (higher derivative terms). (1.8.4)

Once the one constant, F 2, is determined, either by calculation from an underlying the-

ory, or by appeal to experiment, the lowest-order form for all of the Goldstone boson

interactions are completely determined by the symmetry breaking pattern. The resulting

model-independent predictive power has wide applications throughout physics, as we shall

see when we consider examples in subsequent chapters.
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1.9 Nonrelativistic Lagrangians

Before turning to examples, we pause to outline the changes in the above analysis which

become necessary when it is applied to nonrelativistic systems, for which the space-

time symmetry is not Poincaré invariance. This is what is appropriate, for example,

in condensed-matter applications for which there is a preferred frame, defined by the

centre-of-mass of the medium of interest.

So long as our attention is restricted to internal symmetries, most of the considera-

tions of this chapter apply just as well to nonrelativistic problems as they do to relativistic

ones. In particular, the expressions obtained for the nonlinear realization of broken sym-

metries on the Goldstone boson fields does not depend at all on the spacetime symmetries

which are assumed.

We assume for simplicity here that the system remains invariant with respect to

translations and rotations, although the generalization to different spacetime groups is

straightforward in principle. In practice, the results we obtain also apply to some lattice

systems, for which translations and rotations are not symmetries. This is because, at

least for the first few derivatives in a derivative expansion of the lagrangian, the lattice

group for some lattices, such as a cubic lattice for example, implies the same restrictions

as do translation and rotation invariance.

There are two cases, which we consider separately below, depending on whether or

not time reversal is a good symmetry of the system.

1.9.1 When Time-Reversal is a Good Symmetry

For unbroken time reversal, the main difference from the relativistic situation lies in the

fact that the time- and space-derivatives become independent since they are unrelated
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by any symmetries. For instance, assuming unbroken translation and rotation invariance,

the most general self-couplings amongst the Goldstone bosons for the symmetry-breaking

pattern G→ H are:

LGB = −1

2

n∑

r=1

[
F 2

(r),t ĝ
(r)
αβ (θ) θ̇αθ̇β + F 2

(r),s ĝ
(r)
αβ (θ) ∇θα · ∇θβ

]

+(higher derivative terms). (1.9.1)

Compared to the relativistic case, twice as many — that is, 2n — constants, F 2
(r),t and

F 2
(r),s, are required to parameterize the terms containing the fewest number of deriva-

tives. Once these two constants are determined, all other interactions at this order of the

derivative expansion are clearly completely determined.

1.9.2 When Time-Reversal is Broken

New possibilities arise for the lagrangian when time-reversal symmetry is broken, as is

the case for a ferromagnet, for example. In this case, it is possible to write down terms

in LGB which involve an odd number of time derivatives. In particular, the dominant,

lowest-dimension term involving time derivatives involves only one:

∆LGB = −Aα(θ) θ̇α. (1.9.2)

The coefficient function, Aα(θ), can be considered to define a vector field on the coset

space G/H . It is to be chosen to ensure the G invariance of the low-energy theory.

If ∆LGB is required to be invariant under G transformations, then it must be built

using the quantity eα
µ(θ) = eα

β(θ) ∂µθ
β and its covariant derivatives. If it is to involve

only a single time derivative, then it must be proportional only to e0(θ). But the only such

G-invariant quantity is: kαe
α

β θ̇
β, where the constants, kα, must satisfy kαc

α
iβ = 0 for all

indices i and β. Such a kα exists only if the corresponding generator, Xα, commutes with
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all of the generators of the unbroken subgroup, H . This quite restrictive condition is not

ever satisfied in many situations of physical interest, and for these systems it appears —

at least superficially — that no terms involving only a single time derivative are consistent

with G-invariance.

This conclusion would be too strong, however, because it is too restrictive a condition

to demand the G-invariance of the lagrangian density, L. We are only required by G

symmetry to demand the invariance of the action. The lagrangian density need not

be invariant, provided that its variation is a total derivative. It is therefore worth re-

examining the time-reversal-violating term of eq. (1.9.2) in this light.

Once we drop total derivatives in ∆LGB, it is clear that the coefficient Aα(θ) is

only defined up to the addition of a gradient. That is, any two choices Aα and Ãα ≡

Aα + ∂αΩ(θ), differ in their contribution to ∆LGB only by the total derivative:

∆LGB(A+ ∂Ω) − ∆LGB(A) = −∂αΩ(θ) θ̇ = − Ω̇(θ). (1.9.3)

In geometrical terms we may therefore regard the coefficient function, Aα(θ), as defining

a gauge potential on the coset space G/H .

The condition that ∆LGB contribute a G-invariant term to the action therefore

only requires the coefficient Aα(θ) to be G-invariant up to a gauge transformation. In

equations, G-invariance of the action only requires:

£ξAα ≡ ξβ∂βAα + Aβ∂αξ
β = ∂αΩξ, (1.9.4)

for each generator δθα = ξα of the action of G on G/H , and for some scalar functions,

Ωξ(θ), on G/H . This last condition is equivalent to demanding the invariance of the

gauge-invariant quantity: Fαβ = ∂αAβ − ∂βAα. That is,

£ξFαβ ≡ ξλ∂λFαβ + Fλβ∂αξ
λ + Fαλ∂βξ

λ = 0. (1.9.5)
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We shall find that this condition does admit solutions in many cases of interest —

most notably for the example of a ferromagnet.

1.10 Power Counting

Before proceeding to real-life applications, a final important issue must be addressed.

Since the lagrangians expressed using Goldstone boson variables is typically nonrenormal-

izable, it is necessary to know how to use nonrenormalizable lagrangians when making

quantitative calculations.

The key to doing so is to consider the Goldstone Boson lagrangians to which we

have been led in previous sections to be ‘effective theories’ which describe only the low-

energy behaviour of the system of interest. For instance, in our toy models the Goldstone

bosons (θα) are massless while the other degrees of freedom (χ) are not. (Although the

pseudo-Goldstone bosons for an approximate symmetry are not exactly massless, they

may nonetheless appear in the low-energy theory so long as their mass, m, is sufficiently

small.) A lagrangian involving only Goldstone bosons or pseudo-Goldstone bosons can

only hope to describe physics at energies, q, below the mass threshhold, M , for producing

the heavier particles. (It is often the case thatM is proportional to the symmetry-breaking

scale(s), v). The predictions of such a lagrangian are to be regarded as reproducing, in

powers of q/M , whatever the ‘underlying’ (or ‘microscopic’) theory — i.e. the theory

involving the heavy χ states — might be.

In order to make this concrete, consider one such a Lagrangian, having the form:

Leff = f 4
∑

n

cn
Mdn

On

(
φ

v

)
, (1.10.1)

where φ denotes a generic boson field, cn are a set of dimensionless coupling constants
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which we imagine to be at most O(1), and f,M and v are mass scales of the underlying

problem. (For example, in the application to pions which follows we will have f =
√
FπΛχ,

M = Λχ and v = Fπ, where Fπ and Λχ are scales which characterize the strength of the

appropriate symmetry breaking in the strong interactions.) dn is the dimension of the

operator On, in powers of mass, as computed by counting only the dimensions of the field,

φ, and derivatives, ∂φ.

Imagine using this lagrangian to compute a scattering amplitude, AE(q), involving

the scattering of E particles whose four-momenta are collectively denoted by q. We wish

to focus on the contribution to A due to a Feynman graph having I internal lines and

Vik vertices. The labels i and k here indicate two characteristics of the vertices: i counts

the number of lines which converge at the vertex, and k counts the power of momentum

which appears in the vertex. Equivalently, i counts the number of powers of the fields, φ,

which appear in the corresponding interaction term in the lagrangian, and k counts the

number of derivatives of these fields which appear there.

1.10.1 Some Useful Identities

The positive integers, I, E and Vik, which characterize the Feynman graph in question

are not all independent since they are related by the rules for constructing graphs from

lines and vertices. This relation can be obtained by equating two equivalent methods of

counting the number of ways that internal and external lines can end in a graph. On the

one hand, since all lines end at a vertex, the number of ends is given by summing over

all of the ends which appear in all of the vertices:
∑

ik i Vik. On the other hand, there are

two ends for each internal line, and one end for each external line in the graph: 2I + E.
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Equating these gives the identity which expresses the ‘conservation of ends’:

2I + E =
∑

ik

i Vik, (Conservation of Ends). (1.10.2)

A second useful identity defines of the number of loops, L, for each (connected)

graph:

L = 1 + I −
∑

ik

Vik, (Definition of L). (1.10.3)

For simple planar graphs, this definition agrees with the intuitive notion what the number

of loops in a graph means.

1.10.2 Dimensional Estimates

We now collect the dependence of AE(a) on the parameters in Leff .

Reading the Feynman rules from the lagrangian of eq. (1.10.1) shows that the vertices

in the Feynman graph contribute the following factor:

(Vertex) =
∏

ik

[
i(2π)4δ4(p)

(
p

M

)k
(
f 4

vi

)]Vik

, (1.10.4)

where p generically denotes the various momenta running through the vertex.

Similarly, each internal line in the graph contributes the additional factors:

(Internal Line) =

[
−i
∫

d4p

(2π)4

(
M2v2

f 4

)
1

p2 +m2

]I

, (1.10.5)

where, again, p denotes the generic momentum flowing through the line. m denotes the

mass of the light particles which appear in the effective theory, and it is assumed that

the kinetic terms which define their propagation are those terms in Leff involving two

derivatives and two powers of the fields, φ.

As usual for a connected graph, all but one of the momentum-conserving delta func-

tions in eq. (1.10.4) can be used to perform one of the momentum integrals in eq. (1.10.5).
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The one remaining delta function which is left after doing so depends only on the external

momenta, δ4(q), and expresses the overall conservation of four-momentum for the process.

Future formulae are less cluttered if this factor is extracted once and for all, by defining

the reduced amplitude, Ã, by

AE(q) = i(2π)4δ(q) ÃE(q). (1.10.6)

The number of four-momentum integrations which are left after having used all of

the momentum-conserving delta functions is then I −∑
ik Vik + 1 = L. This last equality

uses the definition, eq. (1.10.3), of the number of loops, L.

We now wish to estimate the result of performing the integration over the internal

momenta. In general these are complicated integrals for which a simple result is not

always possible to give. Considerable simplifications arise, however, if all of the masses

and energies of the particles in the low-energy theory are of the same order of magnitude,

since in this case much can be said about the order of magnitude of the momentum

integrals purely on dimensional grounds. (Although this is often the situation of interest

when employing effective theories, it must be borne in mind that it does not always apply.

For instance it excludes a situation of considerable practical interest, where the low-energy

theory includes very massive but slowly-moving, nonrelativistic particles. Power counting

for such systems is beyond the scope of this review.)

In order to proceed with a dimensional argument it is most convenient to regulate

the ultraviolet divergences which arise in the momentum integrals using dimensional reg-

ularization. For dimensionally-regularized integrals, the key observation is that the size

of the result is set on dimensional grounds by the light masses or external momenta of

the theory. That is, if all external energies, q, are comparable to (or larger than) the
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masses, m, of the light particles whose scattering is being calculated, then q is the light

scale controlling the size of the momentum integrations, so dimensional analysis implies

that an estimate of the size of the momentum integrations is:

∫
· · ·

∫ (
dnp

(2π)n

)A
pB

(p2 + q2)C
∼
(

1

4π

)2A

qnA+B−2C , (1.10.7)

with a dimensionless prefactor which carries all of the complicated dependence on dimen-

sionless ratios like q/m. The prefactor also depends on the dimension, n, of spacetime,

and may be singular in the limit that n→ 4.5

With this estimate for the size of the momentum integrations, we find the following

contribution to the amplitude ÃE(q):

∫
· · ·

∫ (
d4p

(2π)4

)L
p
∑

ik
kVik

(p2 + q2)I
∼
(

1

4π

)2L

q4L−2I+
∑

ik
kVik , (1.10.8)

which, with liberal use of the identities (1.10.2) and (1.10.3), gives as estimate for ÃE(q):

ÃE(q) ∼ f 4
(
1

v

)E
(
M2

4πf 2

)2L (
q

M

)2+2L+
∑

ik
(k−2)Vik

. (1.10.9)

This expression is the principal result of this section. Its utility lies in the fact that it links

the contributions of the various effective interactions in the effective lagrangian, (1.10.1),

with the dependence of observables on small mass ratios such as q/M . As a result it

permits the determination of which interactions in the effective lagrangian are required

to reproduce any given order in q/M in physical observables.

Most importantly, eq. (1.10.9) shows how to calculate using nonrenormalizable the-

ories. It implies that even though the lagrangian can contain arbitrarily many terms, and

so potentially arbitrarily many coupling constants, it is nonetheless predictive so long as

its predictions are only made for low-energy processes, for which q/M � 1. (Notice also

5We ignore here any logarithmic infrared mass singularities which may arise in this limit.
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that the factor (M/f)4L in eq. (1.10.9) implies, all other things being equal, the scale f

cannot be taken to be systematically smaller than M without ruining the validity of the

loop expansion in the effective low-energy theory.)

Before stating more explicitly the effective-lagrangian logic, which eq. (1.10.9) sum-

marizes, we pause to generalize it to include fermions in the low-energy effective theory.

1.10.3 Including Fermions

It is straightforward to extend these results to include light fermions in the effective theory,

although once again subject to the important assumption that all masses and energies

are small in the effective theory. To this end, first generalize the starting form assumed

for the lagrangian to include fermion fields, ψ, in addition to boson fields, φ:

Leff = f 4
∑

n

cn
Mdn

On

(
φ

vB

,
ψ

v
3/2
F

)
. (1.10.10)

An important difference between fermion and boson propagators lies in the way each

falls off for large momenta. Whereas a boson propagator varies like 1/p2 for large p, a

fermion propagator goes only like 1/p. This leads to a difference in their contribution to

the power counting of a Feynman graph. It is therefore important to keep separate track

of the number of fermion and boson lines, and we therefore choose to now label vertices

using three indices: k, iB and iF . As before, k labels the numbers of derivatives in the

corresponding interaction, but now iB and iF separately count the number of bose and

fermi lines which terminate at the vertex of interest. The number of vertices in a graph

which carry a given value for k, iB and iF we now label by ViBiF k.

Consider now computing an amplitude which has EB external bosonic lines, EF

external fermion lines, and IB and IF internal bose and fermi lines. Repeating, with the

lagrangian of eq. (1.10.10), the power counting argument which led (using dimensional
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regularization) to eq. (1.10.9) now gives instead the following result:

ÃEB,EF
(q) ∼ f 4

(
1

vB

)EB
(

1

vF

)3EF /2
(
M2

4πf 2

)2L (
q

M

)P

, (1.10.11)

where the power P can be written in either of the following two equivalent ways:

P = 4 − EB − 3

2
EF +

∑

iB ,iF ,k

(
k + iB +

3

2
iF − 4

)
ViBiF k,

= 2 + 2L− 1

2
EF +

∑

iB,iF ,k

(
k +

1

2
iF − 2

)
ViBiF k. (1.10.12)

1.11 The Effective-Lagrangian Logic

The powercounting estimates just performed show how to organize calculations using

nominally nonrenormalizable theories, considering them as effective field theories. They

suggest the following general logic concerning their use.

Step I Choose the accuracy (e.g. one part per mille) with which observables, such as

AE(q), are to be computed.

Step II Determine the order in the small mass ratios q/M or m/M that must be required

in order to acheive the desired accuracy.

Step III Use the power counting result, eq. (1.10.9), to find which terms in the effective

lagrangian are needed in order to compute to the desired order in q/M . Eq. (1.10.9)

also determines which order in the loop expansion is required for each effective

interaction of interest.

Step IVa Compute the couplings of the required effective interactions using the full

underlying theory. If this step should prove to be impossible, due either to ignorance
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of the underlying theory or to the intractability of the required calculation, then it

may be replaced by the following alternative:

Step IVb If the coefficients of the required terms in the effective lagrangian cannot be

computed then they may instead be regarded as unknown parameters which are

to be taken from experiment. Once a sufficient number of observables are used to

determine these parameters, all other observables may be unambiguously predicted

using the effective theory.

A number of points bear emphasizing at this point.

1. The possibility of treating the effective lagrangian phenomenologically, as in Step

IVb above, immeasurably broadens the utility of effective lagrangian techniques,

since they need not be restricted to situations for which the underlying theory is

both known and calculationally simple. Implicit in such a program is the underlying

assumption that there is no loss of generality in working with a local field theory.

This assumption has been borne out in all known examples of physical systems. It

is based on the conviction that the restrictions which are implicit in working with

local field theories are simply those that follow from general physical principles, such

as unitarity and cluster decomposition.

2. Since eq. (1.10.9) — or eqs. (1.10.11) and (1.10.12) — states that only a finite

number of terms in Leff contribute to any fixed order in q/M , and these terms need

appear in only a finite number of loops, it follows that only a finite amount of labour

is required to obtain a fixed accuracy in observables.

Renormalizable theories represent the special case for which it suffices to work only

to zeroeth order in the ratio q/M . This can be expected to eventually dominate
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at sufficiently low energies compared to M , which is the reason why renormalizable

theories play such an important role throughout physics.

3. An interesting corollary of the above observations is the fact that only a finite

number of renormalizations are required in the low-energy theory in order to make

finite the predictions for observables to any fixed order in q/M . Thus, although an

effective lagrangian is not renormalizable in the traditional sense, it nevertheless is

predictive in the same way that a renormalizable theory is.

49



Chapter 2

Pions: A Relativistic Application

We now present a relativistic application of these techniques to the low-energy interac-

tions of pions and nucleons. This example provides a very useful, and experimentally

successful, description of the low-energy limit of the strong interactions, and so illustrates

how effective lagrangians can remain predictive even if it is impossible to predict their

effective couplings from an underlying theory. This example is also of historical inter-

est, since the study of low-energy pion scattering comprises the context within which the

above Goldstone-boson formalism initially arose.

2.1 The Chiral Symmetries of QCD

The modern understanding of the strong interactions is based on the theory of mutually

interacting spin-half quarks and spin-one gluons that is called Quantum Chromodynamics

(QCD). This theory is described by the lagrangian density

LQCD = − 1

4
Ga

µνG
µν
a −

∑

n

qn(/D +mqn
)qn, (2.1.1)

where Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gfa

bc G
b
µg

c
ν is the field strength tensor for the gluon fields,

Ga
µ. Here a = 1, . . . , 8 labels the generators of the gauge symmetry group of the theory,
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SUc(3), for which the fa
bc are the structure constants. The subscript ‘c’ of SUc(3) stands

for ‘colour’, which is the name given to the strong charge.

The quarks are represented by Dirac spinors, qn, where n = 1, · · · , 6 counts the six

kinds of quarks. In order of increasing mass, these are: u, d, s, c, b and t. For the purposes

of later comparison we list here the quark masses, mqn
, in GeV: mu = 0.0015 − 0.005,

md = 0.003−0.009, ms = 0.06−0.17, mc = 1.1−1.4, mb = 4.1−4.4 and mt = 173.8±5.2.

All of these quarks are assumed to transform in the three-dimensional representation of

the colour symmetry group, SUc(3), and so their covariant derivative (which appears in

the combination /D = γµDµ in the lagrangian) is: Dµqn = ∂µqn − i
2
g Ga

µλaqn. The eight

matrices, λa, denote the three-by-three Gell-Mann matrices, which act on the (unwritten)

colour index of each of the quarks. The explicit form for these matrices is not required in

what follows. In all of these expressions g represents the coupling constant whose value

controls the strength of the quark-gluon and gluon-gluon couplings.

The strong interactions as given by the above lagrangian density are believed to

bind the quarks and gluons into bound states, which correspond to the observed strongly

interacting particles (or, hadrons), such as protons (p), neutrons (n), pions (π), kaons

(K), etc.. Table 2.1 lists the masses and some of the quantum numbers for all of the

hadrons whose masses are less than 1 GeV. Considerably more states have masses above

1 GeV.

For the present purposes the most significant feature about this particle spectrum is

that the lightest two quarks, u and d, have masses which are much smaller than all of the

masses of the states which make up the particle spectrum. This suggests that the QCD

dynamics may be well approximated by taking mu, md ≈ 0, and working perturbatively

in these masses divided by a scale, Λ, which is typical of the strong interactions. From
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Particle Quark Content Mass (GeV) Spin Isospin

π−(π+)[π0] du(ud)[uu, dd] 0.140 [0.135] 0 1
π0 uu, dd 0.135 0 1

K+(K0) us(ds) 0.494 (0.498) 0 1
2

K−(K
0
) su(sd) 0.494 (0.498) 0 1

2

η uu, dd, ss 0.547 0 0
ρ−(ρ+)[ρ0] du(ud)[uu, dd] 0.770 1 1

ω uu, dd, ss 0.782 1 0
K∗+(K∗0) us(ds) 0.892 (0.896) 1 1

2

K∗−(K
∗0

) su(sd) 0.892 (0.896) 1 1
2

η′ uu, dd, ss 0.958 0 0
f0 uu, dd, ss 0.980 0 0
a0 uu, dd, ss 0.980 0 1

p(n) uud(ddu) 0.938 (0.940) 1
2

1
2

Table 2.1: Masses and Quantum Numbers of the Lightest Hadrons

the observed bound-state spectrum we expect Λ to be roughly 1 GeV.

The approximation for which mu and md vanish turns out to be a very useful one.

This is because the QCD lagrangian acquires the very useful symmetries

(
u
d

)
→
(
UL γL + UR γR

) ( u
d

)
, (2.1.2)

in this limit, where UL and UR are arbitrary two-by-two unitary matrices having unit

determinant. The Dirac matrix γL = 1
2
(1+γ5) projects onto the left-handed part of each of

the quarks, u and d, while γR = 1
2
(1−γ5) projects onto their right-handed part. The group

of symmetries which is obtained in this way is G = SUL(2)×SUR(2), with the subscripts

‘L’ and ‘R’ indicating the handedness of the quarks on which the corresponding factor

of the group acts. A symmetry such as this which treats left- and right-handed fermions

differently is called a chiral symmetry. These transformations are exact symmetries of

QCD in the limit of vanishing mu and md, but are only approximate symmetries when
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these masses take their real values. Because the approximate symmetry involved is chiral,

the technique of expanding quantities in powers of the light-quark masses is called Chiral

Perturbation Theory.

If this symmetry, G, were not spontaneously broken by the QCD ground state,

|Ω〉, then we would expect all of the observed hadrons to fall into representations of G

consisting of particles having approximately equal masses. This is not seen in the spectrum

of observed hadrons, although the known particles do organize themselves into roughly

degenerate representations of the approximate symmetry of isospin: SUI(2). The isospin

quantum number, I, for the observed SUI(2) representations of the lightest hadrons are

listed in Table 2.1. (The dimension of the corresponding representation is 2I+1.) Isospin

symmetry can be understood at the quark level to consist of the diagonal subgroup of G,

for which UL = UR. That is, the approximate symmetry group which is seen to act on

the particle states is that for which the left- and right-handed components of the quarks

u and d rotate equally.

This suggests that if QCD is to describe the experimentally observed hadron spec-

trum, then its ground state must spontaneously break the approximate symmetry group

G down to the subgroup H = SUI(2), for which:

(
u
d

)
→ U

(
u
d

)
. (2.1.3)

There is indeed good theoretical evidence, such as from numerical calculations, that the

ground state of QCD really does behave in this way.

Given this symmetry-breaking pattern, we know that the low-energy spectrum of

the theory must include the corresponding Goldstone bosons. If G had been an exact

symmetry, then the corresponding Goldstone bosons would be exactly massless. But
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since G is only a real symmetry in the limit that mu and md both vanish, it follows

that the Goldstone bosons for spontaneous G breaking need only vanish with these quark

masses. So long as the u and d quarks are much lighter than the natural scale — Λ ≈ 1

GeV — of the strong interactions, so must be these Goldstone bosons. Indeed, the

lightest hadrons in the spectrum, π± and π0, have precisely the quantum numbers which

are required for them to be the Goldstone bosons for the symmetry-breaking pattern

SUL(2) × SUR(2) → SUI(2).1 Particles such as these which are light, but not massless,

because they are the Goldstone bosons only of an approximate symmetry of a problem

are called pseudo-Goldstone bosons.

Since the low-energy interactions of Golstone bosons are strongly restricted by the

symmetry-breaking pattern which guarantees their existence, it is possible to experimen-

tally test this picture of pions as pseudo-Goldstone bosons. The remainder of this chapter

is devoted to extracting some of the simplest predictions for pion interactions which can

be obtained in this way. The fact that these predictions successfully describe the low-

energy interactions of real pions gives support to the assumed symmetry-breaking pattern

for the ground state of the strong interactions.

2.2 The Low-Energy Variables

In order to proceed, we must first construct the nonlinear realization for the case G =

SUL(2) × SUR(2) and H = SUI(2). To do so, we first write out the representation we

shall use for the elements of each of these groups. Denoting the Pauli matrices, ~τ = {τn},
1In fact, the next-lightest particles, K and η, together with the pions have the quantum numbers to

be the Goldstone bosons for the pattern SUL(3)×SUR(3) → SUV (3), which would be appropriate in the
limit that the lightest three quarks, u, d and s, were all massless. The unbroken subgroup here, SUV (3),
again is the diagonal, handedness-independent, subgroup.
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by τ1 =
(

0 1
1 0

)
, τ2 =

(
0 −i
i 0

)
and τ3 =

(
1 0
0 −1

)
, we write:

g =

(
e

i
2

~ωL·~τ 0
0 e

i
2

~ωR·~τ

)
∈ SUL(2) × SUR(2), (2.2.1)

and

h =

(
e

i
2

~ωI ·~τ 0
0 e

i
2

~ωI ·~τ

)
∈ SUI(2). (2.2.2)

We adopt here, and throughout the remainder of the chapter, an obvious vector notation

for the three-component quantities ωn, θn, un, etc..

In this representation, the Goldtone boson field becomes:

U(~θ) =

(
e

i
2

~θ·~τ 0
0 e−

i
2

~θ·~τ

)
, (2.2.3)

and the nonlinear H transformation, γ, is:

γ(~θ, g) =

(
e

i
2

~u·~τ 0
0 e

i
2

~u·~τ

)
. (2.2.4)

2.2.1 A Notational Aside

Before passing to the nonlinear realization, we briefly pause to make contact between

the variables as defined here, and those that are often used in the literature. We have

defined the elements, g ∈ G, the matrices U(~θ), and γ(~θ, g) in a block-diagonal form which

emphasizes the left- and right-handed parts of the transformations:

g =
(
gL 0
0 gR

)
, U(~θ) =

(
uL(~θ) 0

0 uR(~θ)

)
, γ(~θ, g) =

(
h(~θ, g) 0

0 h(~θ, g)

)
. (2.2.5)

In terms of these quantities, the transformation law U → Ũ = gUγ† becomes uL →

ũL = gLuLh
† and uR → ũR = gRuRh

†. It is common practice to work with the composite

quantity, Ξ, for which the transformation rule does not depend on the implicitly-defined

matrix h. That is, if Ξ ≡ uLu
†
R
, then Ξ → Ξ̃ = gLΞg†

R
. This transformation law has the
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advantage of involving only explicit, constant matrices. In terms of the Goldstone boson

fields, ~θ, we have uL = e
i
2

~θ·~τ = u†
R
, so Ξ = uLu

†
R

= ei~θ·~τ .

It is possible, and often convenient, to reformulate all of the Goldstone boson self-

couplings that are obtained elsewhere in this chapter in terms of this field Ξ. It is not

possible to express the Goldstone-boson couplings to other fields, χ, in this way since the

matrix γ cannot be removed from the transformation law for these other fields.

2.2.2 The Nonlinear Realization

The nonlinear realization is now obtained by constructing both
~̃
θ(~θ, g) and ~u = ~u(~θ, g),

using the condition g U(~θ) = U(
~̃
θ) γ. For the groups under consideration this construction

may be performed in closed form by using the identity:

exp
[
i~α · ~τ

]
= cosα+ iα̂ · ~τ sinα, (2.2.6)

where α =
√
~α · ~α, and α̂ = ~α/α.

Using this identity to multiply out both sides of the defining equation g U(~θ) =

U(
~̃
θ) γ, and equating the coefficients of 1 and ~τ , separately for the left- and right-handed

parts of the matrices, gives explicit expressions for δ~θ = ~ξ and ~u. If gL,R = exp
[

i
2
~ωL,R · ~τ

]
,

and defining ~ωI ≡ 1
2
(~ωL + ~ωR) and ~ωA ≡ 1

2
(~ωL − ~ωR), then:

~ξ = ~θ × ~ωV +
θ

2

(
tan

θ

2
+ cot

θ

2

)
[~ωA − θ̂(θ̂ · ~ωA)] + θ̂(θ̂ · ~ωA),

= ~ωA + ~θ × ωV + O(θ2); (2.2.7)

~u = ~ωV + (θ̂ × ~ωA) tan
θ

2

= ~ωV +
~θ × ~ωA

2
+ O(θ2). (2.2.8)

For future reference we notice that the transformation law for ~θ implies that the
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three broken generators of G = SUL(2) × SUR(2) form an irreducible, three-dimensional

representation of the unbroken subgroup, H = SUI(2).

Similarly evaluating the combination

U †∂µU =
i

2
~eµ ·

(
~τ

−~τ
)

+
i

2
~Aµ ·

(
~τ

~τ

)
, (2.2.9)

gives the quantities with which the invariant lagrangian is built:

~eµ =

(
sin θ

θ

)
∂µ
~θ −

(
sin θ − θ

θ3

)
(~θ · ∂µ

~θ) ~θ,

= ∂µ
~θ
(
1 − 1

6
θ2
)

+
1

6
(~θ · ∂µ

~θ) ~θ +O(θ5); (2.2.10)

~Aµ = −2

(
sin2 θ

2

θ2

)
(~θ × ∂µ

~θ)

= − 1

2
~θ × ∂µ

~θ +O(θ4). (2.2.11)

Notice that ~eµ is odd, and ~Aµ is even, under the interchange ~θ → −~θ. The low-energy

Goldstone boson lagrangian will be required to be invariant under such an inversion of ~θ,

since this is a consequence of the parity invariance of the underlying QCD theory.

It is useful to also record here the G-transformation rules for the other fields which

can appear in the low-energy theory. Of particular interest are the nucleons — neutrons

and protons — since low-energy pion-nucleon interactions are amenable to experimental

study. The nucleon transformation rules under G = SUL(2) × SUR(2) are completely

dictated by their transformations under the unbroken isospin subgroup, H = SUI(2).

Since the nucleons form an isodoublet, N =
(
p
n

)
, they transform under isospin according

to δN = i
2
~ωI · ~τ N . The rule for the complete G tranformations is therefore simply

δN =
i

2
~u · ~τ N. (2.2.12)

57



We therefore see that the appropriate covariant derivative for nucleons is:

DµN = ∂µN − i

2
~Aµ(θ) · ~τ N. (2.2.13)

2.3 Invariant Lagrangians

We may now turn to the construction of the invariant lagrangian which governs the low-

energy form for pion interactions. The lagrangian describing pion self-interactions involv-

ing the fewest derivatives is uniquely determined up to an overall normalizing constant.

As was discussed in detail in the previous chapter, this is because of the irreducibility

of the transformation rules of the broken generators, ~X = 1
2
~τ γ5, under the unbroken

isospin transformations. The most general G-invariant lagrangian density involving only

two derivatives is

Lππ = − F 2

2
ĝmn(~θ) ∂µθ

m∂µθn + (higher-derivative terms), (2.3.1)

where the metric, ĝmn, on G/H is:

gmn(θ) = δrs e
r
m e

s
n = δmn

(
sin2 θ

θ2

)
+ θmθn

(
θ2 − sin2 θ

θ4

)
,

= δmn

(
1 − 1

3
θ2
)

+
1

3
θmθn +O(θ4). (2.3.2)

For applications to pion scattering it is useful to canonically normalize the pion

fields, that is, to ensure that their kinetic terms take the form: − 1
2
∂µ~π · ∂µ~π. This

requires the rescaling: ~θ = ~π/F . With this choice we have:

Lππ = − 1

2



F 2 sin2

(
π
F

)

π2


 ∂µ~π · ∂µ~π +



π2 − F 2 sin2

(
π
F

)

π4


 (~π · ∂µ~π)(~π · ∂µ~π)

+(higher-derivative terms). (2.3.3)

= − 1

2
∂µ~π · ∂µ~π − 1

2F 2
(~π · ∂µ~π) (~π · ∂µ~π) +O(π6) + · · · .
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An integration by parts has been performed in writing the π4 term of the expansion of

the lagrangian.

The couplings between nucleons and pions to lowest order in the derivative expansion

involve only one derivative. The most general form for these that is consistent with the

nonlinearly-realized G-invariance, and with parity invariance, is:

LπN = −N
(
/∂ − i

2
~/A(~θ) · ~τ +mN

)
N − ig

2

(
Nγµγ5~τN

)
~eµ(~θ),

= −N (/∂ +mN)N − ig

2F

(
Nγµγ5~τN

)
· ∂µ~π (2.3.4)

− i

2F 2

(
Nγµ~τN

)
· (~π × ∂µ~π) + · · · .

The ellipses here represent terms which involve either three or more powers of the pion

field, more than two powers of the nucleon field, or involve more than one derivative.

Clearly, only the one constant F need be determined in order to completely fix the

dominant low-energy pion self-interactions, and a second constant, g, is also required to

determine the lowest-order pion-nucleon couplings.

2.3.1 Conserved Currents

For future reference it is instructive to compute the Noether currents for the symmetry

group G = SUL(2)×SUR(2) in both the underlying theory (i.e. QCD), and in the effective

low-energy pion-nucleon theory.

In QCD, the symmetry transformation under G is given by δq = i
2

(~ωLγL + ~ωRγR) ·

~τ q, where q =
(
u
d

)
denotes the two-component quantity containing the two lightest

quarks. The corresponding Noether currents that are obtained from the QCD lagrangian,

eq. (2.1.1) are:

~µ
L

=
i

2
qγµγL~τ q, and ~µ

R
=
i

2
qγµγR~τ q. (2.3.5)
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The current, ~µ
I
, which corresponds to the unbroken SUI(2) isospin symmetry is therefore:

~µ
I

= ~µ
L
+~µ

R
= i

2
qγµ~τ q. The current for the broken symmetry is similarly: ~µ

A
= ~µ

L
−~µ

R
=

i
2
qγµγ5~τ q.

In the effective pion-nucleon theory the corresponding current may also be con-

structed using the known action of G on ~π and N , and using the lagrangian, whose

lowest-derivative terms are given by eqs. (2.3.3) and (2.3.4). Keeping only the terms in-

volving a single pion or only two nucleons, at the lowest order in the derivative expansion,

then gives:

~µ
I

= −
(
~π × ∂µ~π

)
+
i

2
Nγµ~τ N + · · · ,

~µ
A

= F ∂µ~π +
ig

2
Nγµγ5~τ N + · · · . (2.3.6)

There are an infinite number of higher-order terms in these currents corresponding to the

infinite number of interactions in the effective pion-nucleon lagrangian. All of the terms

not written explicitly above involve additional factors of the fields ~π or N , or involve more

derivatives of these fields than do the terms displayed.

2.3.2 Determining F and g

These expressions for the Noether currents for G turn out to furnish a handle for ex-

perimentally determining the constants F and g. This is because, as is made explicit in

the following section, experimental information exists concerning the value of some of the

matrix elements of the broken current ~µ
A
.

This experimental information exists because it is precisely the current ~µ
A

which

appears in that part of the weak-interaction lagrangian which describes transitions from

d quarks to u quarks. Since these transitions are responsible for many reactions, including
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all nuclear β-decays, free-neutron decay, and π± decay, the corresponding matrix elements

of this current can be measured.

The terms in the underlying lagrangian which describe these decays are obtained by

supplementing the QCD interactions of eq. (2.1.1) with the weak-interaction term:

Lweak =
GF cos θC√

2
uγν(1 + γ5)d ν`γν(1 + γ5)`+ h.c.. (2.3.7)

Here the Dirac spinor field ` and the Majorana field ν` respectively represent a charged

lepton — in practice, the electron and muon — and the corresponding neutrino. GF is

the Fermi coupling constant, which is determined from the muon decay rate to be GF =

1.16649(2)× 10−5 GeV−2. The angle θC is called the Cabbibo angle, and it parameterizes

the fact that the size of the coupling constant, GF cos θC, as seen in superallowed nuclear β-

decays is smaller than GF as is measured in muon decay. Numerically, cos θC = 0.9753(6).

The main feature to be noticed from eq. (2.3.7) is that the quark combination which

appears is a linear combination of the conserved SUL(2) × SUR(2) currents:

iuγµ(1 + γ5)d = iqγµγL(τ1 + iτ2) q

=
[
(jI)

µ
1 + i(jI)

µ
2

]
+
[
(jA)µ

1 + i(jA)µ
2

]
. (2.3.8)

In preparation for using eqs. (2.3.6) we have re-expressed the left-handed currents which

appear in the weak interactions in favour of the axial and vector currents using: ~µ
L

=

1
2
(~µ

I
+ ~µ

A
).

To compute the decay rate for the reaction π+ → µ+νµ we require the following ma-

trix element: 〈µ+, νµ|Lweak|π+〉. The part of this matrix element which involves strongly-

interacting particles is 〈Ω|~µ
A
|π+〉, where |Ω〉 is the QCD ground state. The isospin current,

~µ
I
, does not appear in π+ decay because its matrix element vanishes due to the parity
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invariance of the strong interactions. The most general form for this matrix element which

is consistent with Poincaré and isospin invariance is given by:

〈Ω|(jA)µ
n(x)|πm(q)〉 =

iFπ q
µ eiqx

√
(2π)3 2q0

δmn, (2.3.9)

where it is conventional to extract the numerical factor 1/
√

(2π)32, and the pion states

are labelled here as members, |πn〉 (n = 1, 2, 3), of an isotriplet. These are related to

the physical states, having definite electric charge, by: |π±〉 = 1√
2

(|π1〉 ∓ i|π2〉), and

|π0〉 = |π3〉.

The only unknown quantity in this matrix element is the constant Fπ, which is in-

ferred to be Fπ = 92 MeV by comparing the prediction, 1/τth = (G2
F

cos2 θCF
2
πm

2
µmπ/4π) (1−

m2
µ/m

2
π)2, with the observed mean lifetime, τexp = 2.6030(24) × 10−8 s, for the decay

π+ → µ+νµ.

Now, to lowest order in the derivative expansion, the matrix element of eq. (2.3.9)

can be directly evaluated as a function of the parameter F using the second of eq. (2.3.6).

Comparing these results permits the inference

F = Fπ = 92 MeV. (2.3.10)

With this constant in hand, we may now use the low-energy effective lagrangian to predict

the low-energy pion self-interactions.

Before proceeding to these predictions, we first repeat these steps for another matrix

element in order to infer the value of the constant, g, which governs the size of the pion-

nucleon coupling. We once again consider the weak interaction, eq. (2.3.7), but this time

consider its prediction for the decay rate of a free neutron into a proton, an electron and an

antineutrino: n → peνe. In this case, the most general Poincaré-, parity-, time-reversal-
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and isospin-invariant form for the desired matrix element is:

〈N(k, σ)|~µ
I
(x)|N(l, ζ)〉 =

ieiqx

2(2π)3
u(k, σ)

[
F1(q

2)γµ + F2(q
2)γµνqν

]
~τ u(l, ζ),

〈N(k, σ)|~µ
A
(x)|N(l, ζ)〉 =

ieiqx

2(2π)3
u(k, σ)

[
G1(q

2)γµγ5 +G2(q
2)γ5q

µ
]
~τ u(l, ζ).

(2.3.11)

Here, lµ and kµ are the four-momenta of the initial and final nucleons, and qµ = (l − k)µ

is their difference. ζ and σ similarly represent the spins of the initial and final nucleons.

u(k, σ) is the Dirac spinor for a free particle having momentum kµ, with k2 + m2
N

= 0,

and spin σ. (Our normalization is: u(k, σ)u(k, σ′) = (mN/k
0) δσσ′ .) Finally, γµν stands

for the commutator 1
2
[γµ, γν ].

The unknowns in this matrix element are the four Lorentz-invariant functions,

F1, F2, G1 and G2, of the invariant momentum transfer, q2. These functions are not

completely arbitrary, however, since they must encode the fact that we are working in

a limit where G = SUL(2) × SUR(2) is taken to be a symmetry of the QCD lagrangian.

The implications of G-invariance are easily extracted by demanding current conservation,

∂µ~
µ
I

= ∂µ~
µ = 0, for all of the currents. Keeping in mind that the nucleons have equal

mass in the G-invariant limit in which we are working, this implies no conditions on the

functions F1 and F2, but implies for the others:

2imN G1(q
2) = q2 G2(q

2). (2.3.12)

In the rest frame of the decaying neutron, the components of the momentum transfer,

qµ, are at most of order 1 MeV. Since this is much smaller than the typical strong-

interaction scale, Λ ∼ 1 GeV, which characterizes the matrix element, for neutron decay

it suffices to simplify eqs. (2.3.11) using qµ ≈ 0. In this approximation the neutron decay

rate depends only on the two unknown constants, F1(0) and G1(0).
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Figure 2.1: The Feynman graphs which give the dominant nucleon matrix elements of the
Noether currents in the low-energy effective theory. Solid lines represent nucleons, and
dashed lines represent pions.

Since the constants F1(0) and G1(0) correspond to the low-energy limit of these cur-

rent matrix elements, they may be related to the constants which appear in the dominant

terms of the low-energy effective lagrangian. This may be done by using eqs. (2.3.6) to di-

rectly evaluate the matrix elements of eqs. (2.3.11). Doing so, we find contributions from

the two Feynman graphs of Fig. 2.1. The first of these gives the direct matrix element of

eqs. (2.3.6), and contributes to the form factors F1 and G1. The second graph uses the

NNπ interaction of the effective lagrangian, eq. (2.3.4), together with the vacuum-pion

matrix element of eq. (2.3.9). It contributes only to the form factor G2. Evaluating these

graphs, we find:

F1 = 1, G1 = g, and G2 =
2igmN

q2
, (2.3.13)

from which we see F1(0) = 1 and G1(0) = g. The factor 1/q2 in G2 comes from the

massless pion propagator in the second of Figs. 2.1. Notice that this result for G2 is

precisely what is required to satisfy the current-conservation condition of eq. (2.3.12).

The finding that F1(0) = 1 states that this part of the matrix element is not renor-

malized by the strong interactions, since this value for F1(0) is the same as would have

been obtained if the matrix elements of ~µ
I

were taken using the underlying quark states

rather than with the composite nucleon states. F1(0) is the same for both quarks and

nucleons because F1(0) is the quantity which determines the matrix elements in these
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states of the conserved isospin charges, ~I =
∫
d3r ~0

I
. But these have matrix elements

which depend only on the SUI(2) transformation properties of the states whose matrix

elements are taken. Since both quarks and nucleons are isodoublets, and since inspection

of eq. (2.3.5) shows that quarks have F1(0) = 1, the same must be true for nucleons.

The same argument does not hold for the axial current because this is a current for a

symmetry which is spontaneously broken. This turns out to imply that the corresponding

conserved charge is not well defined when acting on particle states, and so G1(0) need not

be unity.

We finally arrive at the desired conclusion: the neutron decay rate, which is com-

pletely determined by the constants F1(0) = 1 and G1(0) = g, can be used to experi-

mentally infer the numerical value taken by the remaining constant, g, of the effective

lagrangian. The measured neutron mean life — which is τexp = 887(2) s — then implies

g = 1.26.

Having determined from experiment the values taken by F and g, we are now in a

position to use the effective pion-nucleon lagrangian to predict the low-energy properties

of pion-pion and pion-nucleon interactions.

2.3.3 The Goldberger-Treiman Relation

Historically the trilinear N −N − π interaction has been written with no derivatives, as

a Yukawa coupling:

LNNπ = igNNπ (N γ5~τ N) · ~π, (2.3.14)

with the constant gNNπ found from phenomenological studies to be close to 14. But the

value of this constant can be predicted in terms of the constant g, and this prediction

serves as the first test of the low-energy pion-nucleon lagrangian.
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The prediction starts with the trilinear N −N − π interaction of eq. (2.3.4):

LNNπ = − ig

2Fπ

(
Nγµγ5~τN

)
· ∂µ~π, (2.3.15)

and performs an integration by parts to move the derivative to the nucleon fields. One

then uses the lowest-order equations of motion for N : i.e. (/∂ + mN)N = 0, to simplify

the result. One obtains a result of the form of eq. (2.3.14), but with

gNNπ =
gmN

Fπ
. (2.3.16)

Using the experimental values: g = 1.26, mN = 940 MeV and Fπ = 92 MeV gives the

prediction gNNπ = 12.8, which agrees well with the phenomenologically inferred value.

This prediction, eq. (2.3.16), is known as the Goldberger-Treiman relation.

We turn now to one last dangling issue which remains to be addressed before we

can compute low-energy pion-pion and pion-nucleon scattering.

2.4 Explicit Symmetry-Breaking

Notice that the effective lagrangian, eqs. (2.3.3) and (2.3.4), has very definite implications

for the masses of the pions and nucleons. It states that the pion multiplet must be exactly

massless, and that the nucleon masses must be equal. Since these predictions rely only on

the assumption of unbroken G invariance, and since G-invariance only holds for QCD in

the limit that mu and md vanish, corrections to the pion and nucleon mass predictions can

only be inferred by including the effects of the symmetry-breaking quark mass terms for

the low energy effective theory. We do so, in this section, to lowest order in the light-quark

masses.

The quark mass terms in the QCD lagrangian are proportional to q MγL q + h.c.,

where M =
(
mu 0
0 md

)
is the light-quark mass matrix. Under the G = SUL(2)×SUR(2)
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symmetry, q → (gLγL + gRγR) q, this transforms into:

q MγL q → q g†
R
MgLγL q + h.c.. (2.4.1)

Although this is not invariant, it would have been invariant if the mass matrix had been

a field which had also transformed under G according to: M → gRMg†
L
.

We imagine the effective pion-nucleon theory having an expansion in the light quark

masses, M : Leff = L0 +L1+ · · ·, where the subscript indicates the power of M it contains.

Each of these terms may be separately expanded in powers of the derivatives, and of the

fields π and N . The construction to this point has given the lowest-derivative terms which

can appear in L0. Our goal now is to determine the most general form which may be

taken by L1, and which contains no derivatives of any fields. This will give the dominant

symmetry-breaking contribution at low energies.

2.4.1 Pions Only: Vacuum Alignment

We start by focussing on the part of L1 which depends only on the pion fields. The

form taken by L1 may be obtained from the following argument. We require that L1 be

G-invariant, but only if we take M → gRMg†
L

in addition to transforming the fields π in

their usual way.

It is straightforward to construct one such a term involving only the pion fields. The

simplest construction is to use the quantity Ξ ≡ uLu
†
R

= ei~θ·~τ = cos θ+ iθ̂ · ~τ sin θ, defined

in section (8.2.1), which transforms according to Ξ → Ξ̃ = gLΞg†
R
. (Recall here that θ

and θ̂ are defined by θ =
√
~θ · ~θ and θ̂ = ~θ/θ.)

A possible lagrangian therefore is:

L1,ππ = −A Re Tr [M Ξ] − B Im Tr [M Ξ] (2.4.2)
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= −A (mu +md) cos θ −B (mu −md) θ3
sin θ

θ
. (2.4.3)

Clearly this generates a potential energy which is a function of ~θ, as is possible because

of the explicit breaking of the SUL(2) × SUR(2) symmetry by the quark masses. As a

result, all values for ~θ are not equally good descriptions of the vacuum, and it is necessary

to minimize the potential in order to determine the vacuum value for ~θ. This choosing

of the vacuum value for the pseudo-Goldstone fields after the introduction of explicit

symmetry-breaking is a process known as vacuum alignment.

In the present instance the potential is minimized by θ1 = θ2 = 0, and has the

schematic form V (θ) = −L1(θ) = A cos θ + B sin θ = −|A| cos(θ − θ0), for θ = θ3 and A

and B (or, equivalently, A and θ0) constants. This, once minimized (giving θmin = θ0)

and expanded about the minimum (with θ = θmin + θ′), the potential becomes V (θ′) =

−|A| cos θ′, leaving our lagrangian density of the form:

L1,ππ =
M3

2
Tr [M (Ξ + Ξ†)],

= (mu +md) M3 cos θ, (2.4.4)

= m2
π

[
F 2

π − 1

2
~π · ~π − 1

4!F 2
π

(~π · ~π)2 +O(π6)

]
,

with the constant M3 positive.

Eq. (2.4.4) gives the required symmetry-breaking interaction, where the ~π’s are

chosen so that the vacuum is at ~π = 0, and, in the last line, we have also eliminated

the arbitrary parameter, M, which has the dimensions of mass, in terms of the common

mass, mπ, we find for all three pions:

m2
π = (mu +md)

M3

F 2
π

. (2.4.5)

There are several features here worth highlighting. Firstly, notice that all of the pion
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self-interactions necessarily preserve isospin to this order in the derivative and quark-mass

expansions. This implies, among other things, degenerate masses for all three pions. This

preservation of isospin does not rely on the isospin-breaking difference, mu −md, being

small in comparison with mu or md. Rather, it relies only on mu and md both being small

compared to the characteristic scale of QCD. We must look elsewhere for an understanding

of the observed mass difference between the charged and neutral pions, such as to the

isospin-breaking electromagnetic interactions.

Secondly, the lagrangian of eq. (2.4.4) necessarily implies a quark-mass-dependent

contribution to the vacuum-energy density, −ρV = L1,ππ(~π = 0) = m2
πF

2
π = (mu +

md)M3. This contribution permits a physical interpretation for the parameter M, as

follows. In the underlying theory the derivative of the total vacuum energy, ρV , with

respect to any quark mass is given by:

∂ρV

∂mq
= 〈Ω|q q|Ω〉, (2.4.6)

where |Ω〉 is the QCD ground state. We see, by comparison with the pion scalar potential,

eq. (2.4.4), that

〈Ω|uu|Ω〉 = 〈Ω|d d|Ω〉 = −M3 + · · · , (2.4.7)

where the ellipses here denote the contributions due to quantum effects in the low-

energy pion-nucleon theory. Evidently M ≈ [m2
πF

2
π/(mu +md)]

1/3
gives the size of

the expectation value which is responsible for the spontaneous breaking of the chiral

SUL(2) × SUR(2) symmetry. Using the values mπ = 140 MeV, Fπ = 92 MeV and

4.5 MeV < mu +md < 14 MeV then gives 230 MeV <M < 330 MeV for this scale.

Next, we remark that since none of the terms which appear in L1,ππ depend on

derivatives of ~π, they do not at all affect expressions (2.3.6) for the conserved Noether
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currents of the theory. We therefore need not at all change the above analysis which

determined the experimental values for the constants F and g from pion and nucleon

weak decays.

Finally, we note that the mass term given in eq. (2.4.4) is the only possible term (up

to normalization) which is linear in M and depends only on θ, and not on its derivatives.

This uniqueness follows from the impossibility of building a G-invariant scalar potential.

To see this, we write L1 = Tr (M O) + h.c., for O(~θ) a two-by-two matrix function of the

Goldstone boson fields. O must transform under G according to O → gLOg†R. O1 = Ξ

satisfies these conditions, but suppose O = O2 were a second, independent solution. In

this case, the combination V (~θ) = Tr [O1O†
2] or V (~θ) = det [O1O†

2] would be a G-invariant

scalar potential, as would any of the eigenvalues of the matrix O1O†
2. Since we know from

the previous chapter no such potential is possible, it follows that an independent quantity,

O2, also cannot exist.

2.4.2 Including Nucleons

We next consider the part of L1 which involves precisely two factors of the nucleon field,

and no derivatives. That is: L1,Nπ = −N f(~θ,M) γLN + h.c., where the transformation

laws: ~θ → ~̃θ and N → Ñ = h(~θ, g)N imply that the matrix-valued function, f(~θ,M),

must satisfy: f(~̃θ, gRMg†
L
) = h f(~θ,M) h†.

The solution, unique up to normalization, to this condition is: f = u†
R
MuL, where

uL = u†
R

= exp
[

i
2
~θ · ~τ

]
. We therefore find:

L1,Nπ = −λ N
[
e

i
2

~θ·~τ M e
i
2

~θ·~τ
]
N + h.c.

= −λN M N − iλ

(
sin θ

2θ

)
N
{
~θ · ~τ ,M

}
γ5N
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+λ

(
sin2 θ

2

θ2

)
N
[
~θ · ~τM~θ · ~τ + θ2M

]
N (2.4.8)

= −λN M N − iλ

2Fπ
N
{
~π · ~τ ,M

}
N

+
λ

4F 2
π

N
[
~π · ~τM~π · ~τ + ~π · ~πM

]
N + · · · .

As usual, curly braces denote the anticommutator of the corresponding matrices: {A,B} =

AB +BA.

Notice that besides providing nonderivative pion-nucleon couplings, this term also

splits the neutron and proton masses by an amount:

δλmN = λ(md −mu). (2.4.9)

Even though they do not contribute to the pion mass splittings, the differing u and d

quark masses do act to split the masses of the nucleon isodoublet. Now, mu and md

may be determined by repeating the above analysis for the masses of the lightest eight

mesons, π,K, η, under the assumption that these are all pseudo-Goldstone bosons for the

symmetry group SUL(3)×SUR(3) which is appropriate when the s quark is assumed to be

light in addition to the u and d quarks. In principle, once this has been done, eq. (2.4.9)

permits the constant λ to be extracted from the experimental difference, mn − mp =

1.293318(9) MeV. It is important in so doing to include also the contributions of the

electromagnetic interactions to this mass difference, since these are similar in size to

eq. (2.4.9).2

2.5 Soft Pion Theorems

We may now proceed to work out some of the implications of the effective lagrangian

for low-energy pion-pion scattering. As usual, the first question must be to ask which
2I thank John Donoghue for reminding me of the importance of this electromagnetic contribution.
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interactions need be considered in which Feynman graphs in order to properly mimic the

low-energy expansion of the underlying QCD theory. To this end we use the powercounting

results of Chapter 1.

2.5.1 Power Counting

For simplicity we consider here only the case where there are no nucleons in the low-energy

theory, since only in this case we can directly use the power-counting results obtained in

Chapter 1. As has already been emphasized, these results cannot be directly applied

to nucleons, because they were derived under the assumption of very light, relativistic

fermions, and the nucleons in the low-energy pion-nucleon theory are very massive and

nonrelativistic at the energies of interest.

Power Counting in the Symmetric Limit

We start by omitting all symmetry-breaking terms of the pion lagrangian which are pro-

portional to the quark masses. These are considered in the next section. In this case the

pions are massless, and their Goldstone-boson lagrangian has the form given in eq. (2.3.1):

Lππ = −F 2
π

[
1

2
ĝmn(~θ) ∂µθ

m∂µθn +
c

Λ2
χ

hmnpq(~θ) ∂µθ
m∂µθn ∂νθ

p∂νθq + · · ·
]
, (2.5.1)

where c is a dimensionless number which is, in principle, calculable from QCD. The ellipses

represent an infinite sequence of additional terms, including several others which also have

four derivatives, as does the displayed term proportional to c.

Eq. (2.5.1) has the form of eq. (1.10.1), with: f =
√
FπΛχ, v = Fπ, and M = Λχ ∼

4πFπ ∼ 1 GeV. The powercounting estimate of eq. (1.10.9) for the scattering of pions

becomes:

ÃE(q) ∼ F 2
πΛ2

χ

(
1

Fπ

)E (
Λχ

4πFπ

)2L
(
q

Λχ

)2+2L+
∑

ik
(k−2)Vik

, (2.5.2)
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which is a famous result, due first to Weinberg.

For a given observable, AE(q), the number, E, of external particles is fixed. In

this case it is only the last two factors of eq. (2.5.2) which differentiate different types of

contributions. We remark that in practical applications for pion scattering, it happens

that Λχ ∼ 4πFπ ∼ 1 GeV. As a result, the second-last factor, (Λχ/4πFπ)
2L, turns out

to be O(1) for realistic pion scattering. This means that it is only the last factor which

controls the importance of various interactions.

According to eq. (2.5.2), the contribution of higher-derivative interactions is clearly

only suppressed by the ratio q/Λχ, which limits us to considering only low-energy pion

dynamics near threshhold. The dominant term in the expansion in powers of q/Λχ corre-

sponds to choosing the smallest possible value for the quantity P = 2+2L+
∑

ik(k−2)Vik.

It is noteworthy, when using this expression, to remark that all of the interactions have at

least two derivatives (we temporarily ignore pion masses etc.), and so k ≥ 2. Furthermore,

it is only the first term in the derivative expansion which has k = 2, and so the k = 2

interaction is unique.

As a result the lowest value possible for P is P = 2, and this is only possible if

L = 0 and if Vik = 0 for all k > 2. This implies that the dominant contribution to pion

scattering is computed by using only the first term in the effective lagrangian, eq. (2.5.1),

and working only to tree level with these interactions.

The next-to-leading terms in q/Λχ then have P = 4, which can arise in either one of

two ways. (i) We can have L = 1 and Vik = 0 for all k > 2; or (ii) we can have L = 0 and

Vi4 = 1 for some i, while Vi2 can take any value. This states that the subleading, O(q4),

contribution is obtained by either working to one loop order using only the interactions

of the first term of the lagrangian of eq. (2.5.1), or using tree graphs having exactly one
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vertex taken from the four-derivative interactions in the lagrangian, as well as any number

of interactions from the first term in the lagrangian.

In this way it is clear how to compute any given order in the expansion in powers

of q/Λχ.

Symmetry-Breaking Terms

Before proceeding to calculations, we must also include one other feature. We must track

the appearance of the explicit symmetry-breaking terms, of which we only keep those

which are proportional to a single power of the light-quark masses, mq ∼ mu, md. These

vertices, which come from the symmetry-breaking term L1, can be very simply included

into the power-counting results of Chapter 1 by considering all of the non-derivative

interactions to be suppressed by a dimensionless coupling, ck=0 ∼ (mq/Λχ) ∼ (m2
π/Λ

2
χ).

With these points in mind, eq. (2.5.2) becomes:

ÃE(q) ∼ Λ2
χF

2
π

(
1

Fπ

)E (
q

Λ

)P
(
mq

Λχ

)∑
k=0

Vik

, (2.5.3)

where P can be written in either of two equivalent ways:

P = 4 −E +
∑

ik

(k + i− 4)Vik,

= 2 + 2L+
∑

ik

(k − 2)Vik. (2.5.4)

Using the first of these forms for P we see that the contribution to the powercounting

estimate due to the insertion of the symmetry-breaking terms with k = 0 is:

∏

k=0

(
q

Λ

)(i−4)Vik

(
mq

Λχ

)Vik

. (2.5.5)

The dangerous interactions are clearly those for which i < 4. For example, the pion mass
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Figure 2.2: The Feynman graphs which give the dominant contributions to pion-pion
scattering in the low-energy pion-nucleon theory. The first graph uses a vertex involving
two derivatives. The second involves the pion mass, but no derivatives.

term, ∼ m2
ππ

2, has i = 2, and so contributes the factor

∏

k=0

(
mqΛχ

q2

)Vik

. (2.5.6)

Now, we are interested in applications for which the external momenta, q, are of

order several hundred MeV, and so q ∼ mπ ∼
√
mqΛχ. For these momenta the factor

(mqΛχ/q
2) ∼ (m2

π/q
2) ∼ O(1). It follows that it is not a good approximation to perturb

in the pion mass term, and so we should include this term in the unperturbed lagrangian.

That is, we should include the pion mass explicitly into the pion propagator so that

Gπ(q) = −i/(q2 + m2
π − iε). It is legitimate to perturb in all of the other symmetry-

breaking interactions of the scalar potential, however, since for these k = 0 and i ≥ 4.

We now turn to specific interactions, starting with pion-pion scattering, for which

E = 4. In this case the above powercounting shows that there are precisely two dominant

contributions. The first of these consists of the tree graph of Fig. 2.2, using the four-

point vertex from the G-invariant term which involves two derivatives, eq. (2.3.3). The

second contribution is also obtained using the graph of Fig. 2.2, but this time takes the

four-point pion self-interaction from the symmetry-breaking scalar potential of eq. (2.4.4).

Although the first term is unsuppressed by the light-quark masses, it gives a contribution

which is down relative to the second term by two powers of external momenta, q. Both

are therefore comparable in size for pions near threshhold, q2 ∼ m2
π. All other graphs are
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smaller than these two by powers of either mq or q.

2.5.2 Pion-Pion Scattering

We now compute pion-pion scattering by evaluating the graphs of Fig. 2.2 using the

effective pion self-couplings of eqs. (2.3.3) and 2.4.4. A straightforward calculation gives

the following S matrix element for the scattering πaπb → πcπd:

S(πaπb → πcπd) =
iδ4(pa + pb − pc − pd)

(2π)2
√
p0

ap
0
bp

0
cp

0
d

Aab,cd, (2.5.7)

with

Aab,cd =
1

F 2
π

[
δabδcd (s−m2

π) + δacδbd (t−m2
π) + δadδbc (u−m2

π)
]
, (2.5.8)

where the Lorentz-invariant Mandelstam variables, s = −(pa + pb)
2, t = −(pa − pc)

2 and

u = −(pa − pd)
2 are related by the identity: s + t + u = 4m2

π. In the CM frame s, t

and u have simple expressions in terms of the pion energy, E, and three-momentum, q:

s = 4E2, t = −2E2 + 2q2 cos ϑ and u = −2E2 − 2q2 cosϑ. Here ϑ denotes the scattering

angle, also in the CM frame.

Comparison with the data is made using channels having definite angular momentum

and isospin. If we decompose Aab,cd into combinations, A(I), having definite initial isospin:

Aab,cd = A(0) 1

3
δabδcd+A(1) 1

2
(δacδbd−δadδbc)+A(2)

[
1

2
(δacδbd + δadδbc) −

1

3
δabδcd

]
, (2.5.9)

then

A(0) =
2s−m2

π

F 2
π

, A(1) =
t− u

F 2
π

, A(2)
cd = − s− 2m2

π

F 2
π

. (2.5.10)

The next step is to resolve these amplitudes into partial waves:

A(I)
` ≡ 1

64π

∫ 1

−1
d cosϑ P`(cosϑ)A(I) (2.5.11)
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Parameter Leading Order Next Order Experiment

a0
0 7m2

π/32πF 2
π 0.16 0.20 0.26(5)

b00 m2
π/4πF

2
π 0.18 0.26 0.25(3)

a1
1 m2

π/24πF 2
π 0.030 0.036 0.038(2)

a2
0 −m2

π/16πF 2
π -0.044 - 0.041 - 0.028(12)

b20 −m2
π/8πF

2
π -0.089 -0.070 -0.082(8)

Table 2.2: Theory vs Experiment for Low-Energy Pion Scattering

where P`(cosϑ), as usual, denote the Legendre polynomials (so P0(x) = 1 and P1(x) =

x). Since all of the dependence on ϑ appears through the variables t and u, and since

eqs. (2.5.10) give A(0) and A(2) as functions of s only, it is clear that only the partial wave

` = 0 is predicted at lowest order for the even isospin configurations. Also, since A(1) is

strictly linear in cosϑ, it only involves the partial wave ` = 1.

The actual comparison with the data is made by expanding the (real part of) A(I)
`

in powers of the squared pion momentum: q2/m2
π = E2/m2

π − 1 = (s− 4m2
π)/4m2

π. That

is, writing

A(I)
` =

(
q2

m2
π

)` (
aI

` + bI

`

q2

m2
π

+ · · ·
)
, (2.5.12)

defines the pion scattering lengths, aI

`, and slopes, bI

`. Applying these definitions to

eqs. (2.5.10) gives the predictions of the second and third columns of Table 2.2. Column

three gives the numerical value corresponding to the analytic expression which is given in

column two. The predictions including the next-order terms in the q2/Λ2
χ expansion have

also been worked out, and are given in the fourth column of this Table.3

Comparison of these predictions with experiment is not straightforward, since it is

not feasible to directly perform pion-pion scattering experiments. Instead, the pion-pion

3I have taken these values from the excellent book Dynamics of the Standard Model by Donoghue,
Golowich and Holstein (see bibliography).
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scattering amplitudes at low energies are inferred from their influence on the final state

in other processes, such as K → ππeνe or πN → ππN . The experimental results, as

obtained from kaon decays, for those quantities which are predicted to be nonzero at

lowest order are listed in the right-hand-most column of Table 2.2. Data also exist for

other partial waves which are predicted to vanish at lowest order, such as I = 0, ` = 2,

and these are found to be in good agreement with the nonzero predictions which arise at

next-to-leading order in the low-energy expansion.

This example nicely illustrates the predictive power which is possible with a low-

energy effective lagrangian, even if it is impossible to predict the values for the couplings

of this lagrangian in terms of an underlying theory. This predictive power arises because

many observables — e.g. the pion scattering lengths and slopes — are all parameterized

in terms of a single constant — the decay constant, Fπ — which can be extracted directly

from experiment. We emphasize that this predictive power holds regardless of the renor-

malizability of the effective theory. Computing to higher orders involves the introduction

of more parameters, but predictions remain possible provided that more observables are

computed than there are parameters to fix from experiment. The information under-

lying these predictions comes from the symmetries of the underlying theory, as well as

the restrictions due to the comparatively small number of possible interactions which can

appear at low orders of the low-energy expansion.
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Chapter 3

Magnons: Nonrelativistic
Applications

We now turn to a second application, this time to a nonrelativistic system. Besides once

again illustrating the utility of the effective-lagrangian techniques, this example shows

how the analysis can be applied to more complicated condensed-matter systems. It also

illustrates how effective lagrangians permit the separation of the generic predictions which

follow only from general properties such as the symmetry-breaking patterns, from the

details of the models which may be used to establish these symmetry-breaking patterns

from the underlying physics.

We take as our application the macroscopic behaviour of ferromagnets and antifer-

romagnets. These systems exhibit a transition at low temperatures to a phase which is

characterized by a bulk order parameter, which we call S for the ferromagnet and N for

the antiferromagnet, which transforms under rotations as a vector. For ferromagnets this

order parameter can be taken to be the overall magnetization of the sample. Because this

order parameter spontaneously breaks the rotational symmetry, Goldstone bosons must

exist and so must appear in any low-energy (or long-wavelength) description of these sys-

tems. It is the low-energy interactions of these Goldstone bosons which is described in
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this chapter.

The distinction between a ferromagnet and an antiferromagnet requires more infor-

mation concerning the underlying material. As for most condensed-matter systems, the

underlying microscopic system consists of an enormous number of electromagnetically in-

teracting electrons and atomic nuclei. One picture of what is going on in a ferromagnet

or antiferromagnet consists of imagining the electrons being reasonably localized to their

corresponding atoms, with these atoms carrying a net magnetic moment due to its having

a net electronic spin. The electron in each atom which carries the net spin interacts with

its counterparts on neighbouring atoms, resulting in (among other things) an effective

spin-spin interaction between these atoms. This spin-spin interaction can come about

due to the exchange part of the Coulomb interaction, which arises due to the antisym-

metrization of the wavefunction which is required because of the statistics of the electrons.

Under varying circumstances one might suppose this spin-spin interaction to either favour

the mutual alignment of neighbouring spins, or their antialignment (where the spins line

up to point in opposite directions).

The behaviour of such mutually interacting electronic or atomic spins may then be

investigated by abstracting out just this spin dynamics into a simplifying model. For ex-

ample, the interacting electrons can be replaced by a system of spins which are localized

to each of the lattice sites which define the nuclear positions in the solid. The mutual in-

teractions of the atoms can be reduced to a spin-spin coupling having a phenomenological

sign and magnitude, according to whether it is energetically favourable for neighbouring

spins to be aligned or antialigned. Such models show that at low temperatures macro-

scopic numbers of these spins tend to either align or antialign, according to which of these

takes less energy. A system for which neighbouring spins tend to align, prefers to acquire
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Figure 3.1: The Distinction Between Ferromagnets (F) and Antiferromagnets (AF).

a net magnetization since the magnetic moment of each atom adds to give a macroscopi-

cally large total. This is a ferromagnet. If neighbouring spins prefer to antialign, then the

order of the ground state consists of spins which alternate in their alignment, with every

other spin pointing in a fixed direction, and the others pointing in the opposite direction.

Such an arrangement is called antiferromagnetic. These two alternative arrangements are

pictured in Fig. 3.1.

The statistical mechanics of such spin models can successfully describe many fea-

tures of real ferromagnets and antiferromagnets. So long as calculations are based on

models, however, it is difficult to quantitatively assess their accuracy. One of the pur-

poses of the present chapter is to show that some predictions for these systems are very

robust, since they do not rely on more than the qualitative features of the models. The

robust predictions are those which can be formulated completely within the framework

of a low-energy effective theory, and which therefore rely only on the spectrum and sym-

metries which dominate at low energies. The accuracy of this kind of prediction can be

quantitatively assessed since this accuracy is controlled by the domain of validity of the

effective theory itself. The role played in this kind of calculations by the details of an

underlying model is simply the prediction of the quantum numbers and symmetries of the

low-energy degrees of freedom, and so the model need only get these qualitative features

right in order to accurately reproduce the proper low-energy behaviour.
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This line of reasoning, in which some quantitative predictions can be justified as

general low-energy features of a given system can be of great practical importance. For

example, some very high-precision measurements are now based on the macroscopic be-

haviour of complicated condensed matter systems. Examples are the Josephson effect,

or the Integer Quantum Hall effect, both of which have been used to fix the best mea-

sured value for the electromagnetic fine structure constant, α. These determinations are

accurate to within very small fractions of a percent. We should only believe such a deter-

mination of α if we can equally accurately justify the theoretical predictions of the effects

on which the determination is based — a very tall order if the prediction is to be based

on a model of the underlying system. Happily, such an accuracy is possible, and is one of

the fruits of an effective lagrangian analysis of these systems.

We now turn to the application of these effective-lagrangian techniques to the de-

scription of the long-distance, low-energy behaviour of the ordered spin systems.

3.1 Antiferromagnetism: T Invariance

We start with applications to the low-energy properties of antiferromagnets. We do so

because antiferromagnets preserve a type of time-reversal symmetry, which makes the

analysis of its low energy behaviour fairly similar to what would apply for relativistic

systems.

For an antiferromagnet, the order parameter, N, can be taken to be the staggered

sum of the spins, si, for each lattice site, ‘i’:

N =
∑

i

(−)i si, (3.1.1)

where the sign, (−)i, is positive for one sublattice for which all spins are parallel in the
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ordered state, and is negative for the other sublattice for which all spins are antiparallel

with those of the first lattice. We shall refer to these sublattices in what follows as the

‘even’ and ‘odd’ sublattice respectively. By taking such an alternating sum we find the

expectation 〈N〉 6= 0 in the system’s ground state, |Ω〉.

The action of time-reversal invariance, T , is to reverse the sign of the spin of every

site: si → −si. Although this transformation also reverses the order parameter, N →

−N, it may be combined with another broken symmetry, S, to obtain a transformation,

T̃ = TS, which is a symmetry of N. This other symmetry, S, consists of a translation

(or shift) of the whole lattice by a single lattice site, taking the entire ‘even’ sublattice

onto the ‘odd’ sublattice, and vice versa. Since both S and T act to reverse the direction

of N, they preserve N when they are performed together.

We next turn to the construction of the general low-energy lagrangian for the Gold-

stone bosons for the breaking of rotation invariance — called magnons — for these sys-

tems.

3.1.1 The Nonlinear Realization

The first step is to identify the symmetry breaking pattern, G→ H . At first it is tempting

to assume that the role of G should be played by the spacetime symmetries, since these

include rotations. This is not correct, however, for several reasons. Firstly, the spacetime

symmetries of a lattice do not consist of the full group of translations and rotations since

these symmetries are broken by the lattice itself. The unbroken subgroup consists only of

the group of lattice symmetries: i.e. those translations and rotations which take the lattice

to itself. There are indeed Goldstone bosons for the spontaneous breaking of translational

and rotational symmetry down to this lattice group, but these are the phonons and are
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not the focus of the present analysis.

In fact, the rotations of the spins on the lattice can be taken to be an internal SU(2),

or SO(3), symmetry, rather than a spacetime symmetry. This is because the action of

rotations on the intrinsic spin of a particle becomes an independent internal symmetry,

separate from spacetime rotations, in the limit that the particle involved is nonrelativistic.

This is because all of the interactions which couple the orbital angular momentum with

the spin angular momentum vanish in the limit that the particle mass tends to infinity.

Since the spins of interest for real systems are those for nonrelativistic electrons or atoms,

we may consider the broken symmetry group to be an internal symmetry, G = SU(2)

(which equals G = SO(3), locally). In real life, the electron mass is not infinite, so there

are small ‘spin-orbit’ effects which really do break the internal spin symmetry. These

introduce small corrections to predictions based on this symmetry, such as the exact

gaplessness of the Goldstone mode. We ignore any such symmetry-breaking effects in

what follows.

The order parameter for the symmetry breaking is the vector, N, itself, and so the

group of unbroken transformations is H = U(1) (or, SO(2)), consisting of rotations about

the axis defined by 〈N〉. The coset space which is parameterized by the Goldstone bosons

is therefore the space G/H = SU(2)/U(1), or SO(3)/SO(2). This last way of writing

G/H identifies it as a two-sphere, S2, since this describes the space swept out by the

action of rotations on a vector, 〈N〉, of fixed length.

We now have two ways to proceed. We could, on the one hand, follow the steps

outlined in Chapter 1 to construct the nonlinear realization of G/H and its invariant

lagrangian. Instead we choose here to take a simpler route. As discussed in Chapter 1,

the most general possible low-energy Goldstone boson lagrangian must necessarily take
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the form of eq. (1.9.1):

LAF =
F 2

t

2
ĝαβ(θ) θ̇αθ̇β − F 2

s

2
ĝαβ(θ)∇θα · ∇θβ

+(higher-derivative terms), (3.1.2)

where ĝαβ(θ) is an SO(3)-invariant metric on the two-sphere. This form is the most gen-

eral consistent with the nonlinearly-realized SO(3) invariance, as well as with invariance

with respect to translations, rotations and the time-reversal-like symmetry, T̃ , described

above.1 The T̃ invariance rules out interactions having an odd number of time derivatives,

such as the term linear in time derivatives which was constructed in Chapter 1.

The main point to be made is that the lagrangian given in eq. (3.1.2) is unique, a

result which follows from the uniqueness of the SO(3)-invariant metric on the two-sphere.

The uniqueness of this metric is a consequence of the fact that the two broken generators

of SO(3)/SO(2) form an irreducible representation of the unbroken subgroup SO(2) —

a condition which was shown to imply a unique metric in Chapter 1. Since it is unique,

any representation of it is equally good and we choose here to use the familiar polar

coordinates, (θ, φ), for the two-sphere, in terms of which the invariant metric has the

usual expression: ds2 = dθ2 + sin2 θdφ2. With this choice the above lagrangian becomes:

LAF =
F 2

t

2

(
θ̇2 + sin2 θ φ̇2

)
− F 2

s

2

(
∇θ · ∇θ + sin2 θ ∇φ · ∇φ

)

+(higher-derivative terms). (3.1.3)

Alternatively, we can equally well parameterize S2 using a unit vector, ~n, where

1We use translation and rotational invariance for simplicity, even though these are too restrictive for
real solids, for which only the lattice symmetries should be imposed. For some lattices, such as cubic
ones, the implications of the lattice group turn out to be the same as what is obtained using rotation and
translation invariance, at least for those interactions involving the fewest derivatives which are studied
here.
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nx = sin θ cosφ, ny = sin θ sin φ and nz = cos θ, so ~n · ~n = 1. Then

LAF =
F 2

t

2
~̇n · ~̇n− F 2

s

2
∇~n · ∇~n

+(higher-derivative terms). (3.1.4)

This variable, ~n(r, t), makes most clear the physical interpretation of the Goldstone modes:

they describe long-wavelength variations in the direction of the order parameter 〈N〉.

It has the drawback of hiding the self-interactions which are implied by LAF , since the

lagrangian of eq. (3.1.4) is purely quadratic in ~n. The self-interactions, which are manifest

in expression (3.1.3), are nonetheless present, and are hidden in the constraint ~n · ~n = 1.

The nonlinear realization of SO(3) transformations on these variables is straight-

forward to work out, starting with the transformation rule for ~s: δ~n = ~ω × ~n, where

the vector ~ω represents the three SO(3) transformation parameters. This implies the

transformations:

δθ = ωy cosφ− ωx sin φ

δφ = ωz − ωx cot θ cosφ− ωy cot θ sinφ. (3.1.5)

With these transformation laws we may immediately write down the first terms in

a derivative expansion of the Noether currents, ~µ = (~ρ,~j), for the SO(3) invariance in

the low-energy effective theory. They may be most compactly written:

~ρ = F 2
t (~̇n× ~n) + · · · and ~j = −F 2

s (∇~n× ~n) + · · · , (3.1.6)

where the dots are a reminder of the unwritten higher-derivative contributions.

The other quantities which arise in the general nonlinear realization may also be

constructed in terms of these variables. For example, the four independent components
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of the covariant quantity (zweibein), eα
β(θ, φ), are most easily constructed, following the

geometrical picture of Chapter 1, as the components of any two orthogonal vectors which

are tangent to the two sphere. These may be found by differentiating the unit vector, ~n,

because the identity ~n · ~n = 1 implies ~n · δ~n = 0, for any variation, δ~n. Denoting these

two vectors by ~eθ = ∂~n/∂θ and ~eφ = ∂~n/∂φ, we have in cartesian components:

(~eθ)x = cos θ cosφ, (~eθ)y = cos θ sinφ, (~eθ)z = − sin θ;

(~eφ)x = − sin θ sinφ, (~eφ)y = sin θ cos φ, (~eφ)z = 0. (3.1.7)

Clearly these vectors satisfy ~eθ ·~eφ = ~eθ · ~n = ~eφ · ~n = 0, and ~eθ ·~eθ = 1, ~eφ ·~eφ = sin2 θ, so

~eα · ~eβ = ĝαβ, as required. The two-by-two matrix, eα
β, of components may be found by

expressing the two vectors, ~eβ, defined by eqs. (3.1.7), as linear combinations of any two

orthonormal basis vectors, ~tα, which lie tangent to the sphere: i.e. eα
β = ~tα · ~eβ. Using

the basis vectors ~eβ themselves for this purpose leads to the result:

(
eθ

θ eθ
φ

eφ
θ eφ

φ

)
=
(

1 0
0 sin θ

)
. (3.1.8)

3.1.2 Physical Applications

Any physical question that could be asked of the low-energy limit of the underlying theory

can equally well be addressed using the low-energy effective lagrangian. In particular, the

lagrangian just derived for the Goldstone modes for a ferromagnet may be used to describe

the response (at zero or nonzero, but small, temperature) of the system to probes which

couple to the spin degrees of freedom.

In order to interpret the constants Fs and Ft it is convenient to expand the field

~n, or equivalently θ and φ, about its vacuum configuration, ~n0 = 〈N〉. We are free to

perform an SO(3) rotation to choose the direction of ~n0 arbitrarily, and so we use this
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freedom to ensure that ~n0 points up the positive x-axis. This implies that θ and φ take

the vacuum values, θ0 = π
2

and φ0 = 0. Writing the canonically normalized fluctuation

fields by θ = π
2
+ ϑ/Ft and φ = ϕ/Ft, the lagrangian becomes:

LAF =
1

2

(
ϑ̇2 − v2 ∇ϑ · ∇ϑ

)
+

1

2
cos2

(
ϑ

Ft

) (
ϕ̇2 − v2 ∇ϕ · ∇ϕ

)

+(higher-derivative terms), (3.1.9)

=
1

2

(
ϑ̇2 − v2 ∇ϑ · ∇ϑ+ ϕ̇2 − v2 ∇ϕ · ∇ϕ

)

− ϑ2

2F 2
t

(
ϕ̇2 − v2 ∇ϕ · ∇ϕ

)
+ · · · .

The constant, v, here represents the ratio v = Fs/Ft. The ellipses denote terms that

involve at least six powers of the fields, or which involve more than two derivatives with

respect to either position or time.

The terms quadratic in the fields describe two real modes which propagate according

to the linear dispersion law: E(p) = vp. These modes physically correspond to spin

waves: small, long-wavelength precessions of the vector ~n about its vacuum value, ~n0.

They carry ±1 unit of the conserved SO(2) spin in the direction parallel to 〈N〉. This

gives the physical interpretation of the parameter v to be the velocity of propagation of

these modes. The condition that this velocity must be smaller than the velocity of light is

v ≤ c = 1 (in fundamental units), or, equivalently, Fs ≤ Ft. Ft is similarly seen to govern

the strength of the interaction terms in eq. (3.1.9).

These modes and their interactions are amenable to experimental study through

their electromagnetic couplings. Although magnons carry no electric charge, they do

couple to magnetic fields, B, due to the interactions of the microscopic magnetic moments

which participate in the long-wavelength spin waves. This gives a coupling of the magnetic

field to the medium’s spin density. This coupling can be probed, for example, by scattering
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neutrons which are also electrically neutral but which carry an intrinsic magnetic moment

which interacts with magnetic fields.

The interaction between magnons and electromagnetic fields is therefore given by

a term of the form: Lem = −ν ~s · B, where ~s is the system’s spin density. The lowest-

dimension effective interaction between magnons and electromagnetic fields is now ob-

tained by expressing the spin density in a derivative expansion, using Noether’s result,

eq. (3.1.6), for ~s = ~ρ. The result is:

Lem = −ν ~s · B,

= −νF 2
t

[
Bx (θ̇ sin φ+ φ̇ sin θ cos θ cosφ)

+By (−θ̇ cosφ+ φ̇ sin θ cos θ sin φ) −Bz φ̇ sin2 θ)
]

= νFt

(
By ϑ̇+Bz ϕ̇

)
+ · · · , (3.1.10)

where ν is an effective coupling parameter having the dimensions of magnetic moment (or:

inverse mass, in fundamental units). Notice that the time derivative in this interaction

ensures invariance with respect to T̃ transformations, under which ~s→ −~s and B → −B.

A nonrelativistic neutron couples to the magnetic field with strength

L = −µN n†~σ n · B, (3.1.11)

where n(x) denotes the two-component neutron field, and ~σ denotes the Pauli matrices

acting in the two-component neutron spin space. The constant µN is the neutron magnetic

moment which is, in order of magnitude, µN ∼ e/mN . As usual e is the electromagnetic

coupling constant (i.e. the proton charge) and mN is the neutron (or nucleon) mass.

Using these interactions, eqs. (3.1.10) and (3.1.11), the cross section per-unit-volume

for neutron scattering from the medium can be computed. For slowly-moving neutrons,
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and under the assumption that only the momentum, p′, of the scattered neutron is mea-

sured we find:

dσ

V d2p′ =
µ2

N
ν2

4π3vN

Vij(p− p′) Sij(E −E ′,p − p′). (3.1.12)

Here vN � 1 is the speed of the incoming, nonrelativistic, neutron, and V is the volume

of the medium whose magnons are responsible for scattering the neutrons. E and E ′

are the energies of the initial and scattered neutrons, and p and p′ are their momenta.

The function, Vij(q), is the magnetic-moment interaction potential (in momentum space)

which arises from the electromagnetic interaction between the neutron and magnon fields:

Vij(q) = δij −
qiqj
q2
. (3.1.13)

The quantity Sij(ω,q) is the spin correlation function, which contains all of the

information about the scattering medium which is relevant for analyzing the neutron

collision. It is defined by:

Sij(ω,q) =
∫
dt d3r 〈si(r, t) sj(0)〉 eiωt−iq·r. (3.1.14)

The quantity 〈si(r, t) sj(0)〉 = Tr[ρ si(r, t) sj(0)] appearing in here is the expectation

defined by the density matrix, ρ, which characterizes the initial state of the medium with

which the neutron scatters. Notice that it is not a time-ordered product of operators

which appears in this expectation.

This correlation function may be explicitly computed at low energies using the

previously-derived effective lagrangian which describes the low-energy magnon self-interactions.

The simplest case is that for which the medium is initially in the no-magnon ground state,

and where the energies involved are low enough to neglect the magnon self-interactions.

In this case the spin density may be well-approximated by the first terms of eq. (3.1.6).
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Then:

Sij(ω,q) =
πω2F 2

t

v|q| δij δ(ω − v|q|), (3.1.15)

where v = Fs/Ft is the speed of magnon propagation.

We see that the cross section has sharp peaks when the neutron energy and mo-

mentum transfers are related by the magnon dispersion relation: E − E ′ = v|p − p′|.

This corresponds to inelastic scattering in which the neutron transfers its energy and

momentum to the medium by creating a magnon. According to eq. (3.1.15) the resulting

peaks in the cross section are infinitely sharp, but in real systems they have a finite width

due to processes which cause the produced magnons to scatter or decay. If the lifetime

for undisturbed magnon propagation, τ = 1/Γ, is much longer than the other interaction

times of interest in the neutron scattering, then the delta function in eq. (3.1.15) becomes

replaced by the lineshape:

δ(ω − v|q|) → Γ

2π

1

(ω − v|q|)2 + 1
4
Γ2
. (3.1.16)

Measurements of the positions and widths of these peaks as functions of the scattered

neutron energy and momentum can be used to measure the magnon dispersion relation —

and so the constant v — and its decay rate, Γ, for the scattering medium. The predicted

linear spectrum is indeed found when neutrons are scattered from antiferromagnets. The

situation when neutrons scatter from ferromagnets is different, as we shall now see.

3.2 Ferromagnetism: T Breaking

For ferromagnets, the order parameter is simply the total magnetization, or the total

spin, of the system. Since this defines a vector in space, the spin symmetry, G = SO(3),

is spontaneously broken to H = SO(2) just as for an antiferromagnet. The low energy
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behaviour of ferromagnets and antiferromagnets are nevertheless quite different, and this

difference is due to the fact that time-reversal symmetry is broken in a ferromagnet but

not in an antiferromagnet.

We denote by S the order parameter for a ferromagnet, which is related to the spins,

si, of the underlying spin model by:

S =
∑

i

si. (3.2.1)

Ferromagnets are characterized by having ground states for which there is a nonzero

expectation for this quantity: 〈S〉 6= 0.

The action of time-reversal invariance, T , is to reverse the sign of the spin of every

site, si → −si, and so it does the same for the order parameter, S → −S. The difference

with the antiferromagnetic case arises because for a ferromagnet it is not possible to

find another broken symmetry which combines with time reversal to preserve S. The

low-energy effective theory can therefore contain T -violating terms, and this changes the

properties of its Goldstone bosons in an important way.

3.2.1 The Nonlinear Realization

Since the symmetry-breaking pattern for both ferromagnets and antiferromagnets is SO(3) →

SO(2), the nonlinear realization of this symmetry on the Goldstone bosons is identical

for these two systems. We therefore use the same polar coordinates in this case, θ and φ,

as in the previous sections. As before it is convenient to use these to define a unit vector,

denoted by ~s, with components sx = sin θ cosφ, sy = sin θ sinφ and sz = cos θ, so that

~s ·~s = 1. The field, ~s(r, t), again describes long-wavelength oscillations in the direction of

〈S〉.
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The action of SO(3) on these variables is once more given by eq. (3.1.5), and the

term in the effective lagrangian which involves the fewest spatial derivatives is again

determined to be:

LF ,s = −F 2
s

2

(
∇θ · ∇θ + sin2 θ ∇φ · ∇φ

)
. (3.2.2)

The new features appear once the term with the fewest time derivatives is con-

structed. As is discussed in some detail in Chapter 1, this involves only a single time

derivative because of the broken time-reversal symmetry. It has the form given by

eq. (1.9.2):

LF ,t = −Aα(θ) θ̇α, (3.2.3)

where the coefficient function, Aα(θ), may be considered to be a gauge field defined on

the coset space G/H . In Chapter 1 it was determined that the condition that this term

be G invariant is that Aα must only be G-invariant up to a gauge transformation, in the

sense that:

£ξAα ≡ ξβ∂βAα + Aβ∂αξ
β = ∂αΩξ, (3.2.4)

for each generator δθα = ξα of G on G/H , where Ωξ(θ) are a collection of scalar functions

on G/H . This last condition is equivalent to the invariance of the field strength for Aα:

£ξFαβ = 0. Our problem is to explicitly construct such a gauge potential for the example

of interest, G/H = SO(3)/SO(2) ≡ S2.

This construction is quite simple. Since our coset space is two dimensional, it is

always possible to write the field strength in terms of a scalar field: Fαβ = B(θ) εαβ ,

where εαβ is the antisymmetric tensor which is constructed using the coset’s G-invariant

metric. The condition that Fαβ be G invariant is then equivalent to the invariance of B.
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That is:

£ξB ≡ ξα ∂αB = 0, (3.2.5)

which is only possible for all G transformations if B is a constant, independent of θα.

Our solution for LF ,t for a ferromagnet therefore simply boils down to the construc-

tion of a gauge potential for which Fαβ = B εαβ on the two-sphere, S2 = SO(3)/SO(2).

But such a gauge potential is very familiar — it is the gauge potential for a magnetic

monopole positioned at the centre of the two-sphere. The result may therefore be written

(locally) as: Aα dθ
α = B cos θ dφ, and so the corresponding lagrangian is given by

LF ,t = −B cos θ φ̇, (3.2.6)

where B is a constant. In terms of the vectors ~s, ~eθ = ∂~s/∂θ and ~eφ = ∂~s/∂φ this may be

written:

LF ,t = −B ~s ·
(
~eθ × ~̇eθ

)
. (3.2.7)

The complete Goldstone boson lagrangian containing the fewest time and space

derivatives is found by combining the contributions of eqs. (3.2.2) and (3.2.6), giving:

LF = −B cos θ φ̇− F 2
s

2

(
∇θ · ∇θ + sin2 θ ∇φ · ∇φ

)
. (3.2.8)

It is instructive to compute the Noether currents for the SO(3) symmetry that is

implied by this lagrangian density. The conserved current density is the same as was

found for the antiferromagnet:

~j = F 2
s (~s×∇~s) + · · · . (3.2.9)

In computing the corresponding expression for the charge density, it is necessary to keep

in mind that under these transformations LF is not invariant, but instead transforms into
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a total derivative:

δLF = − dΩ

dt
= − B

sin θ

(
ωx cos φ+ ωy sinφ

)
. (3.2.10)

Using this in the general expression, eq. (1.2.3), for the Noether current gives the conserved

charge density:

~ρ = B ~s+ · · · . (3.2.11)

The ellipses in this equation, and in eq. (3.2.9), represent more complicated terms which

are suppressed by additional derivatives. As is easily verified, the classical equations of

motion for the lagrangian, (3.2.8), are equivalent to the conservation condition for this

current:

~̇s+ k
(
~s×∇2~s

)
= 0. (3.2.12)

This equation has long been known to describe long-wavelength spin waves in ferromag-

nets, and is called the Landau-Lifshitz equation. The constant, k, here is given in terms

of Fs and B by

k =
F 2

s

B . (3.2.13)

Equation (3.2.11) brings out a feature of time-reversal breaking systems which is

qualitatively different from those which preserve time reversal. It states that it is the

conserved charge density itself, ~ρ, which acquires a vacuum expectation value and breaks

the SO(3) symmetry:

〈~ρ〉 = B 〈~s〉 = B ~s0 6= 0. (3.2.14)

Clearly the breaking of time reversal (and lorentz invariance) are prerequisites for the

acquisition of a nonzero ground-state expectation value for ~ρ, which is the time component

of a current.
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3.2.2 Physical Applications

The propagation of small-amplitude, long-wavelength spin waves is therefore seen to be

completely determined by the underlying pattern of spontaneous symmetry breaking:

SO(3) → SO(2) together with T violation. Linearizing the Landau Lifshitz equation,

eq. (3.2.12), shows the resulting propagating modes to have the quadratic dispersion

relation:

E(p) = kp2. (3.2.15)

This dispersion relation, and the value of the constant k, can be measured by neutron

scattering, in a manner that is similar to what was found for antiferromagnets. We

highlight here only the differences which arise from the antiferromagnetic example.

The lowest-dimension effective interaction which couples the field ~s to electromag-

netic fields in the ferromagnetic case is:

Lem = −µ ~s · B,

= −µB
(
Bx sin θ cosφ+By sin θ sinφ+Bz cos θ

)
,

= −µB Bx − µB
(
By δφ−Bz δθ

)
+ · · · , (3.2.16)

where µ is an effective coupling parameter and we have taken the expectation value, 〈S〉

to point in the positive x direction, so θ = π
2

+ δθ and φ = δφ. The constant term,

independent of δθ and δφ, in the final line of eqs. (3.2.16) gives the interaction energy

between the magnetic field and the expectation value, 〈S〉. This permits the physical

interpretation of the constant µ as the magnetic-moment density of the material.

This interaction between ~s and B breaks T invariance, and has the following puzzling

feature. It does not involve any derivatives of the Goldstone boson fields, θ and φ, in

apparent contradiction with the general results of Chapter 1. In fact, the absence of
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derivatives in eq. (3.2.16) is very much like the absence of derivatives in the pion mass

term. This is because the coupling between ~s and B relates the internal spin SO(3)

symmetry to ordinary rotations in space, and so destroys the freedom to consider both

as separate symmetries. But because rotation invariance is a spacetime symmetry, the

derivations of Chapter 1 do not directly apply, since these assumed the action of internal

symmetries from the outset in the transformation rules of the fields.

Once more taking the neutron coupling to the magnetic field as in eq. (3.1.11),

we may compute the cross section for inelastic neutron scattering. For slowly-moving

neutrons, and under the assumption that only the momentum, p′, of the scattered neutron

is measured we find:

dσ

V d2p′ =
µ2

N
µ2

4π3vN

Vij(p− p′) Sij(E −E ′,p − p′). (3.2.17)

The variables are the same as for the antiferromagnetic example: vN and µN are the speed

and magnetic moment of the slow incoming neutron, V is the volume of the medium, E

(E ′) is the energy of the initial (final) neutron, and p (p′) are the corresponding momenta.

The magnetic-moment interaction, Vij(q), is as given in eq. (3.1.13).

The medium-dependent quantity, Sij(ω,q), once more represents the spin correlation

function, defined by eq. (3.1.14). As was the case for the ferromagnet this is dominated

by sharp peaks when the neutron scatters to produce a magnon, and so has an energy

and momentum transfer related by the magnon dispersion relation. For a ferromagnet

this is: E − E ′ = k(p − p′)2. Measurements of these peaks as functions of the scattered

neutron energy and momentum indeed verifies the quadratic dispersion relation, and can

be used to measure the constant k.

A second consequence of the quadratic magnon dispersion relation is the temperature
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dependence of the magnetization, M = |M|, of a sample at very low temperatures.

Since the magnon field describes the long-wavelength deviations of the net magnetization

from its ground state value, the net magnetization at very low temperatures is simply

proportional to the average magnon occupation number. That is:

M(0) −M(T ) ∝ M(0)
∫
d3p n

(
E

T

)
, (3.2.18)

where n(E/T ) = (exp[E/T ] − 1)−1 is the Bose-Einstein distribution. The temperature

dependence of this result can be determined by changing integration variables from p to

the dimensionless quantity x = E/T . If E(p) ∝ pz, for some power, z, then:

p2 dp = p2 dp

dE
dE ∝ E2/z E−(z−1)/z dE ∝ T 3/z. (3.2.19)

For z = 2 this predicts [M(0)−M(T )]/M(0) ∝ T 3/2, in agreement with low-temperature

observations.
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Chapter 4

SO(5)-Invariance and
Superconductors

The techniques described herein have recently proven useful to analyze the consequences

of a remarkable proposal for the existence of an SO(5) invariance amongst the cuprates

which exhibit high-temperature superconductivity. This chapter presents a bare-bones

outline of this proposal, together with a brief summary of the Goldstone-boson properties

which emerge.

4.1 SO(5) Symmetry

Although a proper presentation of the arguments for — and against, since the subject

remains controversial — the SO(5) proposal is beyond the scope of this review, the form

of the proposed symmetry itself is easy to state. The starting point is the following

experimental fact: by performing small adjustments to any of the high-Tc cuprates, it is

possible to convert them from superconductors into antiferromagnets. This adjustment

is typically accomplished in practice by altering the ‘doping’, which means that atoms

having different valences are randomly substituted into a portion of the unit cells of the

material of interest For example the element Sr might be substituted for the element La in
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Figure 4.1: A typical Temperature–vs–Doping phase diagram for a high-Tc system.

some fraction, x, of the unit cells. Physically, this substitution has the effect of changing

the number of charge carriers in the band from which the superconducting electrons are

taken.

This basic association of superconductivity and antiferromagnetism suggests a fun-

damental connection between the two. Zhang’s proposal is that — at least over part of

the theory’s parameter space — these two phases are related by an approximate SO(5)

symmetry. The action of the symmetry is simplest to state for the order parameters for

the two phases.

As we have seen, in §3, the order parameter for the antiferromagnetic (AF) phase is

simply the direction in space, ~n, into which the alternating aligned spins point. A nonzero

value of this order parameter spontaneously breaks the SO(3) ' SU(2) symmetry of

rotations amongst electron spins:


n1

n2

n3


→ O3



n1

n2

n3


 , (4.1.1)

where On denotes an n-by-n real, orthogonal matrix.

For the superconducting (SC) phase, on the other hand, the order parameter, ψ, is a
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quantity which carries the quantum numbers of a pair of electrons (or holes). Specifically,

it has electric charge q = ±2e, if e is the proton charge, and is usually taken to have no

spin. (The sign of this charge depends on whether the charge carriers are electrons or

holes.) A nonzero value for ψ signals the breaking of the symmetry of electromagnetic

phase rotations: ψ → eiqω ψ. This symmetry forms the group SO(2) ' U(1), as is easily

seen by grouping the real and imaginary parts of ψ into a two-component vector:

(
ψR

ψI

)
→ O2

(
ψR

ψI

)
, (4.1.2)

where ψ = ψR + i ψI .

The SO(5) proposal is that the system is approximately invariant under five-by-five

rotations of all five components of the order parameter,




ψR

ψI

n1

n2

n3




→ O5




ψR

ψI

n1

n2

n3



. (4.1.3)

This symmetry contains electron-spin rotations, eq. (4.1.1), and electromagnetic phase

transformations, eq. (4.1.2), as the block-diagonal SO(2) × SO(3) subgroup which acts

separately on the ψk and the na.

As of this writing, there is a controversy over whether such an approximate symmetry

actually exists for high-Tc superconductors and, if so, to how large a portion of the phase

diagram it might apply. Regardless of how this controversy ultimately becomes resolved,

two points on which everyone must agree are:

1. For any part of the phase diagram for which approximate SO(5) symmetry holds,

and which lies within the ordered (AF or SC) phases, there must be a total of four

Goldstone (or pseudo-Goldstone) bosons. This corresponds to one each for the four
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SO(5) generators which are broken by a nonzero value for one of the ψk or na. These

bosons include the usual Goldstone bosons for SO(3) or SO(2) invariance (e.g., the

magnons), plus some new pseudo-Goldstone bosons which are consequences only of

the assumed SO(5) symmetry.

2. The low-energy properties of these Goldstone and pseudo-Goldstone bosons are com-

pletely dictated by the assumed symmetry-breaking pattern, and are independent

of the details of whatever microscopic electron dynamics gives rise to the symmetry

in the first place. These low-energy properties may be efficiently described using an

effective lagrangian along the lines of those described in Chapter 1.

These two properties taken together make an unambiguous detection of the SO(5) pseudo-

Goldstone bosons a particularly attractive test of the SO(5) proposal. Their detection

would be a ‘smoking gun’ for the existence of an extended symmetry like SO(5). Better

yet, their properties are unambiguously predicted theoretically, without the the usual

complications which arise when complicated electron dynamics is squeezed into a simple

theoretical model. We now construct the low-energy effective lagrangian describing these

pseudo-Goldstone bosons, following the general techniques of the previous sections.

4.2 The Effective Lagrangian in the Symmetry Limit

We start with the effective lagrangian in the (idealized) limit where SO(5) is not just

approximate, but is instead a bona fide symmetry of the system. In this case the lagrangian

symmetry is G = SO(5), and this is spontaneously broken (by the order parameters we

are considering) to the subgroup, H = SO(4). We require in this limit the nonlinear sigma

model for the quotient space G/H = SO(5)/SO(4). As discussed in general in §1, the
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lowest terms in the derivative expansion of the Lagrangian for this system are therefore

completely determined up to a small number of constants. (Precisely how many constants

depends on how much symmetry – including crystallographic symmetries – the system

has. As we describe shortly, more possibilities also arise once explicit SO(5)-breaking

interactions are introduced.)

In this particular case the space SO(5)/SO(4) is an old friend: the four-sphere, S4,

which is defined as the points swept out by an arbitrary five-dimensional vector, ~N , which

has unit length: ~N · ~N =
∑5

i=1N
2
i ≡ 1. In terms of such a field, the invariant lagrangian

obtained using the techniques of previous sections is

Linv =
f 2

t

2
∂t
~N · ∂t

~N − f 2
s

2
∇ ~N · ∇ ~N (4.2.1)

(For simplicity of this and later expressions, eq. (4.2.1) assumes rotational invariance,

which is not appropriate for real cuprates. For real systems, the electrons believed re-

sponsible for superconductivity and antiferromagnetism move preferentially along planes

made up of copper and oxygen atoms. The low-energy lagrangian for such systems is bet-

ter written either in two space dimensions (for Goldstone bosons confined to the planes),

or in three dimensions with separate coefficients, fa for each spatial direction, ∇a. These

complications are ignored here, but are discussed in more detail in the original references.

As is also discussed in these referencse, in specific dimensions it is sometimes also possible

to write more invariants than are considered here, such as those which depend on the

completely antisymmetric tensor, εijk...)

A convenient parameterization for the four-sphere, and so of our Goldstone bosons,

is given by polar coordinates:

~N =
(
nQ

nS

)
, where nQ = cos θ

(
cosφ
sin φ

)
, nS = sin θ




sinα cosβ
sinα sin β

cosα


 . (4.2.2)
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(As usual, care is required to properly handle those points where these coordinates are

singular).

Using the standard expression for the round metric on S4 then gives the unique

Goldstone-boson effective lagrangian for a rotational- and time-reversal-invariant system

in the SO(5) symmetry limit:

L =
f 2

t

2

[
(∂tθ)

2 + cos2 θ(∂tφ)2 + sin2 θ
(
(∂tα)2 + sin2 α(∂tβ)2

)]

− f 2
s

2

[
(∇θ)2 + cos2 θ(∇φ)2 + sin2 θ

(
(∇α)2 + sin2 α(∇β)2

)]
.

4.3 Symmetry-Breaking Terms

Next consider how small SO(5)-breaking effects can change the low-energy lagrangian.

We may do so by following the same steps as were taken in §2 to describe the implications

of quark masses on low-energy pion properties. We do so here in two steps. We first

classify the types of violation of SO(5) symmetry which can arise in real systems. We

then examine which consequences follow only from SO(2) × SO(3) invariance, in order

to be able to disentangle these from predictions which are specific to SO(5). Finally we

perturb in the various SO(5) symmetry-breaking parameters to obtain the predictions of

approximate SO(5) invariance. By contrasting what is obtained with the result assuming

only SO(2) × SO(3) invariance, the consequences of approximate SO(5) invariance may

be found.

4.3.1 Kinds of Explicit Symmetry Breaking (Qualitative)

There are several kinds of SO(5) symmetry breaking which are worth distinguishing from

one another. These are:
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1. Electromagnetic Interactions: One source of explicit SO(5) symmetry breaking is

any couplings to applied macroscopic electromagnetic fields. Electromagnetic gauge

invariance requires these to be incorporated into the lagrangian using the usual

precedure of minimal substitution:

∂tψ → (∂t − i q A0)ψ, ∇ψ → (∇− i q A)ψ. (4.3.1)

Such couplings necessarily break SO(5) because they treat the electrically-charged

components of ~N differently than the electrically-neutral ones. Although such cou-

plings do not pose any complications of principle, for simplicity’s sake we imagine

no macroscopic electromagnetic fields to be applied in what follows.

2. Doping: One of the physical variables on which the phase diagram of the cuprates

crucially depends is the doping. Since changes in the doping correspond to changes

in the density of charge carriers amongst the electrons which are relevant for both

the antiferromagnetism and the superconductivity, it may be described within the

effective theory by using a chemical potential, µ, coupled to electric charge. In

this way adjustments in µ may be chosen to ensure that the system has any given

experimental charge density. Mathematically a chemical potential is introduced by

replacing the system Hamiltonian, H , with the quantity H − µQ, where Q is the

electric charge. Within the Lagrangian formulation in which we are working, this

amounts to simply making the replacement A0 → A0 + µ in the electrostatic scalar

potential, A0.

3. Intrinsic Breaking: The third, and final, category of symmetry-breaking consists of

everything apart from the previous two. It is known that SO(5) is not an exact
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symmetry, even with no chemical potential, and in the absence of any applied elec-

tromagnetic fields. It is the interactions (involving the fewest derivatives) in this

last class of symmetry-breaking terms which we now wish to classify.

4.3.2 General SO(2) × SO(3)-Invariant Interactions

If SO(5) were not a symmetry at all, then there would be no guarantee that the low-

energy spectrum should contain particles described by all of the fields α, β, θ and φ. For

the purposes of later comparison, it is nevertheless useful to ask what kinds of low-energy

interactions among such states are permitted by SO(2)× SO(3) invariance.

The most general such Lagrangian involving these four states may be written in

terms of the fields nS and nQ, where these fields satisfy the constraint nS ·nS +nQ ·nQ ≡ 1,

to the extent that we are interested in only those modes which would be Goldstone or

pseudo-Goldstone modes in the SO(5) limit. The most general such result, which involves

at most two derivatives, supplements the invariant expression, eqs. (4.2.1) or (4.2.3), with

the following terms:

Lsb = −V + f 2
t

[
A∂tnQ · ∂tnQ +B ∂tnS · ∂tnS + C (nQ · ∂tnQ)2

]

−f 2
s

[
D∇anQ · ∇anQ + E∇anS · ∇anS + F (nQ · ∇anQ)2

]

where ft and fs are the constants appearing in the invariant lagrangian. The quantities

V,A,B, C,D,E and F are potentially arbitrary functions of the unique SO(2) × SO(3)

invariant which involves no derivatives: nQ · nQ. (Recall nS · nS is not independent due to

the constraint nS · nS + nQ · nQ = 1).

In terms of polar coordinates, and inserting a chemical potential as just described,
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the total effective lagrangian becomes:

L = −V +
f 2

t

2

[(
1 + 2A sin2 θ + 2B cos2 θ + 2C sin2 θ cos2 θ

)
(∂tθ)

2

+(1 + 2A) cos2 θ(∂tφ+ qµ)2 + (1 + 2B) sin2 θ
(
(∂tα)2 + sin2 α(∂tβ)2

)]

−f
2
s

2

[(
1 + 2D sin2 θ + 2E cos2 θ + 2F sin2 θ cos2 θ

)
(∇θ)2

+(1 + 2D) cos2 θ(∇φ)2 + (1 + 2E) sin2 θ
(
(∇α)2 + sin2 α(∇β)2

)]
+ · · · ,

where all coefficient functions, V , A,...etc., are now to be regarded as functions of cos2 θ.

4.3.3 Kinds of Explicit Symmetry Breaking (Quantitative)

Eq. (4.3.2) does not yet use any information concerning the nature or size of the explicit

symmetry breaking (apart from the inclusion of µ). This we must now do if we are

to quantify the predictions of approximate SO(5) invariance. We do so by making an

assumption as to how the symmetry-breaking terms transform under SO(5).

In §2 we saw, for pions, that the quark masses were responsible for explicitly breaking

the would-be chiral symmetry of the underlying microscopic theory (QCD). Although

the same reasoning can be applied to SO(5) breaking due to electromagnetic interactions

and chemical potential dependence, incomplete understanding of the dynamics of the

microscopic theory so far precludes a similar identification of the other symmetry-breaking

parameters within some underlying condensed-matter system. For these, we instead are

forced to make an assumption.

We therefore assume all SO(5)-breaking terms of the effective lagrangian to be

proportional to one of two possible quantities:

1. Chemical Potential: Since we know how the chemical potential appears in the la-

grangian, we know in detail how it breaks SO(5). It does so by an amount which is
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proportional to the electric charge. For the fields appearing in ~N , this is represented

by the five-by-five electric charge matrix: Q = diag(q, q, 0, 0, 0).

2. Intrinsic Symmetry Breaking: In the absence of more information, we make the

simplest assumption for the form taken in the effective lagrangian by all other

microscopic effects which explicitly break SO(5). Since these break SO(5) to

SO(3)× SO(2) we take them to be proportional to a five-by-five matrix, M , where

M = ε diag (3, 3,−2,−2,−2). Here ε� 1 is a measure of the quality of the approx-

imation that SO(5) is a symmetry.

With these choices the Lagrangian is then the most general function of the fields

~N =
(

nQ

nS

)
, µQ and M , subject to the following SO(5) transformation property

L(O5
~N,O5µQOT

5 ,O5MOT

5 ) = L( ~N, µQ,M), (4.3.2)

where O5 is an SO(5) transformation. The implications of the approximate SO(5) in-

variance may then be extracted by expanding L in powers of the small quantities ε and

µ. Since M and Q always appear premultiplied by these small numbers, this expansion

restricts the kinds of symmetry breaking which can arise order by order, which in turn

constrains the possible θ-dependence of the coefficient functions in L.

For example, a term in the scalar potential involving 2n powers of ~N must have the

following form:

V(n) =
∑

(k1,l1)6=(0,0)

· · ·
∑

(kn,ln)6=(0,0)

Ck1l1,...,kn,ln

[
~N · (εM)k1(µQ)2l1 ~N

]
· · ·

[
~N · (εM)kn(µQ)2ln ~N

]
.

(4.3.3)

Only even powers of Q enter here due to its antisymmetry, and the term ki = li = 0 is

excluded from the sums due to the constraint ~NT ~N = 1. Clearly, expanding L to low
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order in the SO(5)-breaking parameters ε and µ necessarily also implies keeping only the

lowest powers of nQ · nQ = cos2 θ in V .

Similar conclusions may be obtained for the other coefficient functions in the La-

grangian of eq. (4.3.2). Working toO(ε2, εµ2, µ4) in V , and toO(ε, µ2) in the two-derivative

terms then gives:

V = V0 + V2 cos2 θ +
1

2
V4 cos4 θ, (4.3.4)

and

A = A0 + A2 cos2 θ, B = B0 + A2 cos2 θ, C = C0,

D = D0 +D2 cos2 θ, E = E0 +D2 cos2 θ, F = F0,

for the coefficient functions in eq. (4.3.2). Notice that the terms proportional to cos2 θ

in A and B are identical, as are the corresponding terms in D and E. Expanding in

powers of ε and µ, the constants in eqs. (4.3.4) and (4.3.5) start off linear in ε and µ2:

Ai = A10
i ε + A01

i µ
2 + · · · etc.. The only exceptions to this statement are: B0, E0 ∝ ε (no

µ2 term), C0, F0 ∝ µ2 (no ε term), and V4 = V 20
4 ε2 + V 11

4 εµ2 + V 02
4 µ4. Furthermore, since

the µ2 nQ · nQ term in V arises from substituting ∂t → ∂t − iµQ in the kinetic term for

nQ, we have: V 01
2 = − 1

2
f 2

t q
2 to leading order. Higher powers of µ originate from terms in

L which involve more than two derivatives.

4.4 Pseudo-Goldstone Dispersion Relations

We now turn to the calculation of the pseudo-Goldstone boson dispersion relations. The

scalar potential of eq. (4.3.2) has three types of extrema:

(1) θ0 = 0 or π;
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(2) θ0 =
π

2
or

3π

2
;

(3) θ0 where c = cos θ0 satisfies V ′(c2) = 0. (4.4.1)

This leads to the four possible phases: (i) SC phase: extremum (1) is a minimum, and

(2) is a maximum; (ii) AF phase: (2) is a minimum, and (1) is a maximum; (iii) MX

phase: both (1) and (2) are maxima, and (3) is a minimum; or (iv) metastable phase:

both (1) and (2) are minima, and (3) is a maximum. We focus here purely on the AF

and SC phases.

4.4.1 Superconducting Phase

An expansion about the superconducting mimimum, θ0 = 0, gives the dispersion relations

in this phase for the four bosons. Three of these — θ, α and β — form a spin triplet of

pseudo-Goldstone modes for which

E(k) =
[
c2 k2 + E2

]1
2, (4.4.2)

with the phase speed, c2α(SC), and gap, E2
SC

, given to lowest order in SO(5)-breaking

parameters by:

c2α(SC) =
f 2

s

f 2
t

[
1 + 2

(
E(1) −B(1)

)]

=
f 2

s

f 2
t

[
1 + 2

(
E0 −B0

)
+ 2

(
D2 −A2

)]
,

E2
SC

=
−2V ′(1)

f 2
t

=
−2(V2 + V4)

f 2
t

. (4.4.3)

In both of these results the first equation uses the general effective theory, eq. (4.3.2), while

the second equality incorporates the additional information of eqs. (4.3.4) and (4.3.5).
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An important part of the SO(5) proposal is that these states have been seen in neutron-

scattering experiments in the superconducting phase of the high-Tc cuprates, even quite

far away from the antiferromagnetic regime.

The remaining field, φ, would have been a bona fide gapless Goldstone mode in the

absence of electromagnetic interactions. Its dispersion relation, E(k) is a more compli-

cated function of c2k2 and eqµ, whose form is not required here. The quantity c which

appears with k throughout its dispersion relation is given explicitly by

c2φ(SC) =
f 2

s

f 2
t

[
1 + 2

(
D(1) − A(1)

)]

=
f 2

s

f 2
t

[
1 + 2

(
D0 − A0

)
+ 2

(
D2 − A2

)]
. (4.4.4)

4.4.2 Antiferromagnetic Phase

Expanding about the AF minimum gives the usual two magnons, as in §3, satisfying

dispersion relation of eq. (4.4.2) with:

c2
GB

(AF ) =
f 2

s

f 2
t

[
1 + 2

(
E(0) −B(0)

)]

=
f 2

s

f 2
t

[
1 + 2

(
E0 −B0

)]
,

E2
GB

(AF ) = 0. (4.4.5)

The remaining two states group into an electrically-charged pseudo-Goldstone state sat-

isfying:

E±(k) =
[
c2 k2 + E2

]1
2 ± qµ, (4.4.6)

with:

c2
pGB

(AF ) =
f 2

s

f 2
t

[
1 + 2

(
D(0) −A(0)

)]
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=
f 2

s

f 2
t

[
1 + 2

(
D0 − A0

)]
,

E2
AF

= E2
pGB

(AF ) =
2V ′(0)

f 2
t

=
2V2

f 2
t

. (4.4.7)

These expressions imply a simple dependence of the gap on the chemical potential:

E2
AF

= m2 − κµ2,

E2
SC

= −m2 + κµ2 − ξµ4, (4.4.8)

wherem2 := 2V 10
2 ε/f 2

t +O(ε2) , κ := −2V 01
2 /f 2

t +O(ε) = q2+O(ε) and ξ := 2V 02
4 /f 2

t +O(ε).

Within the AF phase the pseudo-Goldstone boson gap is predicted to fall linearly with

µ2:

E2
AF

≈ E2
AF

(0)[µ2
AF

− µ2], (4.4.9)

where µAF represents the doping for which one leaves the AF regime. Similarly E2
SC

varies

quadratically with µ2.

Robust consequences of SO(5) invariance are obtained from expressions such as

these by eliminating the free parameters to obtain relations amongst observables. For

example, if one eliminates parameters in favour of properties of the gap as a function of

µ we find:

ε2
AF

(µ) =
ε2

AF
(0)

µ2
AF

[
µ2

AF
− µ2

]
,

ε2
SC

(µ) =
ε2

SC
(opt)

µ4
opt

(µ2 − µ2
SC−)(2µ2

opt − µ2),

ε2
AF

(0)

µ2
AF

= 2
ε2

SC
(opt)

µ2
opt

,

µ2
AF

= µ2
SC− +O(ε2). (4.4.10)

Here µopt denotes the chemical potential corresponding to the maximum gap, ESC.
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Similarly, the phase velocities for all modes in both SC and AF phases are equal to

one another, and to f 2
t /f

2
s , in the limit of strict SO(5) invariance. (The parameters ft

and fs may be related to other observables, such as the electric and magnetic screening

lengths.) It turns out that the O(ε) corrections to this limit are not arbitrary, but also

satisfy some model-independent relations, which follow by eliminating parameters from

the above expressions:

c2φ(SC) − c2φ(AF ) = c2α(SC) − c2α(AF ) = O(ε). (4.4.11)

4.5 Summary

Approximate SO(5) invariance clearly carries real implications for the low-energy exci-

tations of the system. It predicts, in particular, the existence of a spin-triplet pseudo-

Goldstone state in the SC phase, and an electrically-charged state in the AF phase.

Furthermore, SO(5) invariance unambiguously relates the properties of these states, like

their gap and phase velocity, to one another. Better yet, these properties are claimed to

have been measured in the SC phase, since the spin-triplet state is believed to have been

observed, with a gap (at optimal doping) of 41 meV. If true, this permits the inference of

the size of the rough order of the SO(5)-breaking parameter ε, and hence to predictions

for the properties of the hitherto undetected boson in the AF phase.

It is extremely unlikely that an electrically-charged state having a gap of only ∼ 40

meV can exist deep within the AF phase. Among other things it would make its presence

felt through the electromagnetic response of these systems in the AF phase. At the very

least, one can therefore conclude that SO(5) invariance cannot penetrate very far into the

AF part of the phase diagram, despite its appearance fairly deep in the SC phase. Being

based purely on pseudo-Goldstone boson properties, this conclusion comes independent
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of the details of how the underlying electrons are interacting on more microscopic scales.

There is not yet a consensus as to how uncomfortable this conclusion should make

one feel about the remarkable SO(5) hypothesis. Either way, robust predictions based on

the low-energy consequences of symmetries are likely to play a key role in forming any

such final consensus.
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The applications of the technique of nonlinear realizations to identify the model-

independent properties of the resulting Goldstone and pseudo-Goldstone bosons, which
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